This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Selfcentering and energy dissipation in the column were provided by unbonded superelastic nickeltitanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the 'virgin' model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.
This article presents an unprecedented concept for resilient bridge columns comprising precast modules designed for disassembly. Resiliency is provided by superelastic shape memory alloys that minimize permanent drift and engineered cementitious composite that minimizes damage, while keeping the rest of the column elastic. The precast modules consist of prefabricated plastic hinges and prefabricated concrete-filled fiber–reinforced polymer tubes. The columns are very desirable candidates for accelerated bridge construction. Two ¼-scale column models with engineered cementitious composite plastic hinges incorporating two types of shape memory alloy bars, one made of nickel–titanium and the other of copper–aluminum–manganese, were designed and tested under simulated earthquakes. To assess the influence of reusing column components, each of the models was first tested under a series of ground motions, and then the models were disassembled, inspected, reassembled, and subsequently retested. The reassembled models reached the same capacity as the original models but were more flexible. A simple modeling method was able to match the global measured response of the models with a reasonable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.