Selective serotonin re-uptake inhibitors are pharmaceuticals used to treat a range of psychological disorders. They are frequently found in surface waters in populated areas. In recent years, they have been shown to affect the behaviour of various aquatic organisms in a way that can have ecological effects. In this study, we exposed zebrafish of both sexes to nominally 0.00, 0.15 and 1.50 µg L Escitalopram in flow-through tanks for three weeks. Subsequently, ten swimming behaviour parameters were quantified using high-resolution video tracking. There were noticeable gender differences in the behaviour responses to Escitalopram. Female fish exposed to 1.50 µg L Escitalopram had a lower maximum swimming velocity, stopped less often and exhibited increased boldness (reduced thigmotaxis) compared to controls. Male fish exposed to 1.50 µg L had a lower maximum swimming velocity compared to control fish. At the end of exposures, both length and weight of the females exposed to 1.50 µg L Escitalopram were significantly less than the group of control fish. In addition, males exposed to 1.50 µg L Escitalopram were significantly shorter than control fish. The behaviour, weight and body length of the fish exposed to nominally 0.15 µg L was not significantly different from control fish in either sex. The results of this study demonstrate that Escitalopram can affect subtle but ecologically important aspects of fish behaviour and lends further credibility to the assumption that Escitalopram is an environmentally active pharmaceutical.
Selective serotonin reuptake inhibitors (SSRIs) are psychoactive pharmaceuticals that have been detected intact in natural waters globally. Laboratory experiments have reported that several SSRIs inhibit fish foraging behavior, but data for the SSRI escitalopram are lacking. The objectives of the present study were to determine whether escitalopram affects feeding behavior in zebrafish and whether possible sex differences exist. We exposed female and male zebrafish (Danio rerio) to 0.00, 0.10, and 1.50 µg/L of escitalopram in flow‐through tanks for a 3‐wk exposure period. We used a video tracking system with high temporal and spatial resolution to collect data on zebrafish swimming patterns in test tanks containing a food source. The results show a more pronounced effect of escitalopram in males compared with females. At the assumed most environmentally relevant concentration (0.10 µg/L), male average feeding time/visit and maximum feeding duration were significantly reduced by 27 and 42%, respectively. In addition, male total feeding duration was also significantly reduced (by 73%) at the highest concentration (1.50 µg/L). In females, only the maximum feeding duration was significantly reduced (by 41%) in the 0.10 µg/L treatment group. Hence, we reject our initial hypothesis that female feeding behavior is more vulnerable to escitalopram. There was no effect of escitalopram on length or weight among the experimental groups. The present study demonstrates that escitalopram, like other SSRIs, can inhibit fish foraging behavior and therefore potentially disturb natural food chains. Finally, our study suggests that SSRIs can both be sex and behavior specific. Environ Toxicol Chem 2019;38:1902–1910. © 2019 SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.