Aseptic necrosis of the femoral head (AVN) leads to destruction of the affected hip joint, predominantly in younger patients. Advanced core decompression (ACD) is a new technique that may allow better removal of the necrotic tissue by using a new percutaneous expandable reamer. A further modification is the refilling of the drill hole and the defect with an injectable, hard-setting, composite calcium sulphate (CaSO₄)-calcium phosphate (CaPO₄) bone graft substitute. Compression tests were performed on seven pairs of femoral cadaver bones. One femur of each pair was treated with ACD, while the opposite side remained untreated. Clinically, the postoperative outcome of 27 hips in 23 patients was performed by physical examination 6 weeks after ACD and at average follow-up of 9.69 months, and compared with the preoperative results. MRI was used to assess the removal of the necrotic tissue, any possible progression of AVN and evaluation of collapse. In the biomechanical analysis, the applied maximum compression force that caused the fracture did not significantly differ from the untreated opposite side. The overall results of postoperative physical examinations were significantly better than preoperatively. Five hips (18.5%) were converted to a total hip replacement. The follow-up MRIs of the other patients showed no progression of the necrotic area. The first follow-up results of ACD have been encouraging for the early stages of aseptic necrosis of the femoral head. In our opinion, an assured advantage is the high stability of the femoral neck after ACD, which allows quick rehabilitation.
Background“Advanced Core Decompression” (ACD) is a new technique for treatment of osteonecrosis of the femoral head (ONFH) that includes removal of the necrotic tissue using a percutaneous expandable reamer followed by refilling of the drill hole and the defect with an injectable, hard-setting, composite calcium sulphate (CaSO4)-calcium phosphate (CaPO4) bone graft substitute. As autologous bone has been shown to be superior to all other types of bone grafts, the aim of the study is to present and evaluate a modified technique of ACD with impaction of autologous bone derived from the femoral neck into the necrotic defect.MethodsA cohort of patients with an average follow-up of 30.06 months (minimum 12 months) was evaluated for potential collapse of the femoral head and any reasons that led to replacement of the operated hip. Only patients in stages 2a to 2c according to the Steinberg classification were included in the study.ResultsIn 75.9% the treatment was successful with no collapse of the femoral head or conversion to a total hip replacement. Analysis of the results of the different subgroups showed that the success rate was 100% for stage 2a lesions and 84.6% respectively 61.5% for stages 2b and 2c lesions.ConclusionsPrevious studies with a comparable follow-up reported less favourable results for ACD without autologous bone. Especially in stages 2b and 2c the additional use of autologous bone has a positive effect. In comparison to other hip-preserving techniques, the modified ACD technique is a very promising and minimally invasive method for treatment of ONFH.Trial registrationGerman clinical trials register (DRKS00011269, retrospectively registered).
The so-called "Advanced Core Decompression" (ACD) is a new option that tries to remove the necrotic tissue in patients with osteonecrosis of the femoral head (AVN) in a minimally invasive way by the use of a percutaneous expandable reamer and refilling with a resorbable and osteoinductive bone-graft substitute. Seventy-two hips of sixty patients with a mean follow-up of 29.14 months after ACD have been included in this study. Patients underwent physical examination preoperatively and six weeks after surgery as well as at two further follow-ups. Certain phases in disease progression and size of the necrotic lesion were differentiated on the basis of the classification of osteonecrosis of the femoral head by Steinberg.The femoral heads had collapsed in 24 cases (33%). Analysis of the survival rates with regard to defect size revealed that the largest defects had a significantly higher rate of femoral head collapse than the smaller defects. Clinical scores were also depending on defect size but also on disease stage. The current ACD technique has not yet achieved any significant improvement in the success rate of core decompression procedures. It can be concluded that the success of ACD depends especially on the defect size. Copyright © 2015 John Wiley & Sons, Ltd.
"Advanced core decompression" (ACD) is a treatment option for osteonecrosis of the femoral head (ONFH) that aims at complete removal of the necrotic tissue using a percutaneous expandable reamer and refilling of the head with an osteoconductive bone-graft substitute. The objective of this study was to evaluate if the success of ACD depends on the amount of necrotic tissue remaining after the procedure and how efficiently the necrotic tissue can be removed with the current reamer. Three-dimensional models of proximal femora including ONFH were generated from the preoperative MRIs of 50 patients who underwent ACD. Best-case removal was calculated by geometrical analysis. In 28 of 50 cases, postoperative MRI was used to determine how much necrotic tissue had been removed. Prognostic values and correlations were evaluated in order to assess success or failure of the treatment. The amount of preoperative and remaining necrosis correlates significantly with treatment failure. The larger both volumes are, the more likely it is that treatment will fail. In patients with remaining necrosis of less than 1000 mm(3), no treatment failure was observed. The amount of necrosis actually removed differed significantly from the amount calculated as the best possible result. Simulation of the removal procedure showed that complete removal is not possible. These results led to the conclusion that the success of ACD depends on the amount of necrotic tissue remaining in the femoral head after the procedure. Modifications to the instrument are necessary to increase the amount of necrotic tissue that can be removed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.