Random networks are intensively used as null models to investigate properties of complex networks. We describe an efficient and accurate algorithm to generate arbitrarily two-point degree-degree correlated undirected random networks without self-edges or multiple edges among vertices. With the goal to systematically investigate the influence of two-point correlations, we furthermore develop a formalism to construct a joint degree distribution P(j,k) , which allows one to fix an arbitrary degree distribution P(k) and an arbitrary average nearest neighbor function k_{nn}(k) simultaneously. Using the presented algorithm, this formalism is demonstrated with scale-free networks [P(k) proportional, variantk;{-gamma}] and empirical complex networks [ P(k) taken from network] as examples. Finally, we generalize our algorithm to annealed networks which allows networks to be represented in a mean-field-like manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.