Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light sensing kinases that control diverse cellular functions in plants, bacteria, and fungi.1-9 Bacterial phytochromes consist of a photosensory core and a C-terminal regulatory domain.10,11 Structures of photosensory cores are reported in the resting state12-18 and conformational responses to light activation have been proposed in the vicinity of the chromophore.19-23 However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here, we report crystal and solution structures of the resting and active states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures reveal an open and closed form of the dimeric protein for the signalling and resting state, respectively. This nanometre scale rearrangement is controlled by refolding of an evolutionarily conserved “tongue”, which is in contact with the chromophore. The findings reveal an unusual mechanism where atomic scale conformational changes around the chromophore are first amplified into an Ångström scale distance change in the tongue, and further grow into a nanometre scale conformational signal. The structural mechanism is a blueprint for understanding how the sensor proteins connect to the cellular signalling network.
Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
Through controlled annealing of intimately mixed blends of the polyfluorene copolymers poly(9,9′-dioctylfluorene-co-bis(N,N′-(4,butylphenyl))bis(N,N′-phenyl-1,4-phenylene)diamine) (PFB) and poly(9,9′-dioctylfluorene-co-benzothiadiazole) (F8BT) we observe the change in charge generation dynamics and photovoltaic performance as the length of nanoscale phase separation is varied from 5 nm or less to greater than 40 nm. We find that device efficiency is optimized for a phase separation of ∼20 nm, significantly larger than the exciton diffusion length of ∼5-10 nm. Femtosecond time-resolved transient absorption measurements confirm that the charge generation time is longer and charge generation efficiency is lower in films with a more evolved morphology. Photoluminescence quantum efficiency is also observed to monotonically increase with annealing temperature consistent with a decrease in exciton dissociation resulting from a coarsening of phases. Using a Monte Carlo model of exciton diffusion and dissociation in computersimulated structures, we infer that the domains have purity of >95% and find good agreement between the observed photoluminescence quenching and measured domain sizes. Charge transport studies of single-carrier devices show that charge transport through the blend does not significantly improve as device performance improves, and photocurrent is observed to scale linearly with light intensity independent of blend morphology and device geometry. We conclude that the recombination of geminate charge pairs is limiting device performance, with the optimum phase separation of 20 nm balancing the efficiency of charge generation and charge separation.
A detailed charge recombination mechanism is presented for organic photovoltaic devices with a high open-circuit voltage. In a binary blend comprised of polyfluorene copolymers, the performance-limiting process is found to be the efficient recombination of tightly bound charge pairs into neutral triplet excitons. We arrive at this conclusion using optical transient absorption (TA) spectroscopy with visible and IR probes and over seven decades of time resolution. By resolving the polarization of the TA signal, we track the movement of polaronic states generated at the heterojunction not only in time but also in space. It is found that the photogenerated charge pairs are remarkably immobile at the heterojunction during their lifetime. The charge pairs are shown to be subject to efficient intersystem crossing and terminally recombine into F8BT triplet excitons within approximately 40 ns. Long-range charge separation competes rather unfavorably with intersystem crossing--75% of all charge pairs decay into triplet excitons. Triplet exciton states are thermodynamically accessible in polymer solar cells with high open circuit voltage, and we therefore suggest this loss mechanism to be general. We discuss guidelines for the design of the next generation of organic photovoltaic materials where separating the metastable interfacial charge pairs within approximately 40 ns is paramount.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.