Premise: Strong postzygotic reproductive isolating barriers are usually expected to limit the extent of natural hybridization between species with contrasting ploidy. However, genomic sequencing has revealed previously overlooked examples of natural cross-ploidy hybridization in some flowering plant genera, suggesting that the phenomenon may be more common than once thought. We investigated potential cross-ploidy hybridization in British eyebrights (Euphrasia, Orobanchaceae), a group from which 13 putative cross-ploidy hybrid combinations have been reported based on morphology. Methods: We analyzed a contact zone between diploid Euphrasia rostkoviana and tetraploid E. arctica in Wales. We sequenced part of the internal transcribed spacer (ITS) of nuclear ribosomal DNA and used genotyping by sequencing (GBS) to look for evidence of cross-ploidy hybridization and introgression. Results: Common variant sites in the ITS region were fixed between diploids and tetraploids, indicating a strong barrier to hybridization. Clustering analyses of 356 single-nucleotide polymorphisms (SNPs) generated using GBS clearly separated samples by ploidy and revealed strong genetic structure (F ST = 0.44). However, the F ST distribution across all SNPs was bimodal, indicating potential differential selection on loci between diploids and tetraploids. Demographic inference suggested potential gene flow, limited to around one or fewer migrants per generation. Conclusions: Our results suggest that recent cross-ploidy hybridization is rare or absent in a site of secondary contact in Euphrasia. While a strong ploidy barrier prevents hybridization over ecological timescales, such hybrids may form in stable populations over evolutionary timescales, potentially allowing cross-ploidy introgression to take place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.