Sagopilone (ZK-EPO) is the first fully synthetic epothilone undergoing clinical trials for the treatment of human tumors. Here, we investigate the cellular pathways by which sagopilone blocks tumor cell proliferation and compare the intracellular pharmacokinetics and the in vivo pharmacodynamics of sagopilone with other microtubule-stabilizing (or tubulinpolymerizing) agents. Cellular uptake and fractionation/ localization studies revealed that sagopilone enters cells more efficiently, associates more tightly with the cytoskeleton, and polymerizes tubulin more potently than paclitaxel. Moreover, in contrast to paclitaxel and other epothilones [such as the natural product epothilone B (patupilone) or its partially synthetic analogue ixabepilone], sagopilone is not a substrate of the P-glycoprotein efflux pumps. Microtubule stabilization by sagopilone caused mitotic arrest, followed by transient multinucleation and activation of the mitochondrial apoptotic pathway. Profiling of the proapoptotic signal transduction pathway induced by sagopilone with a panel of small interfering RNAs revealed that sagopilone acts similarly to paclitaxel. In HCT 116 colon carcinoma cells, sagopilone-induced apoptosis was partly antagonized by the knockdown of proapoptotic members of the Bcl-2 family, including Bax, Bak, and Puma, whereas knockdown of Bcl-2, Bcl-X L , or Chk1 sensitized cells to sagopilone-induced cell death. Related to its improved subcellular pharmacokinetics, however, sagopilone is more cytotoxic than other epothilones in a large panel of human cancer cell lines in vitro and in vivo. In particular, sagopilone is highly effective in reducing the growth of paclitaxel-resistant cancer cells. These results underline the processes behind the therapeutic efficacy of sagopilone, which is now evaluated in a broad phase II program. [Cancer Res 2008;68(13):5301-8]
Background:Epothilones are a novel group of microtubule (mt) targeting cancer drugs that bind to the β-subunit of the αβ-tubulin dimer. Epothilones inhibit cell proliferation and induce cell death by interfering with the normal mt function. In this study, we examined the consequences of altered expression of human β-tubulin isotypes in terms of the epothilone drug response in human lung and breast cancer cell lines.Methods:The β-tubulin isotypes TUBB2A–C, TUBB3 and TUBB were silenced or overexpressed in A549, A549EpoB40 and MCF7 cell lines in the presence or absence of epothilones. The drug effects on cell proliferation, mitosis and mt dynamics were determined using live cell microscopy and immunofluorescence assays.Results:Loss of TUBB3 enhanced the action of epothilones. TUBB3 knockdown increased the severity of drug-induced mitotic defects and resulted in stabilisation of the mt dynamics in cells. Moreover, exogenous expression of TUBB3 in the epothilone resistant cell line conferred the response to drug treatments. In contrast, reduced levels of TUBB2A–C or TUBB had not apparent effect on the cells' response to epothilones.Conclusion:Our results show that the expression of TUBB3 contributes to the cellular response to epothilones, putatively by having an impact on the mt dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.