New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure is reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F x , x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.
The single crystal growth of 19 different intermetallic compounds within the LnT 2 X 2 family (with Ln = lanthanides, T = Co, Ru, Rh, Ir, and X = Si, P) is presented, by employing a high-temperature metal-flux technique. The habitus of the obtained crystals is platelet-like with the crystallographic c direction perpendicular to the surface and with individual masses between 1 and 100 mg. The magnetic properties of these crystals are characterized by magnetization, heat-capacity, and resistivity measurements. These crystals form the materials basis for a thorough study of exciting surface properties by angle-resolved photoemission spectroscopy.
We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.
The microscopic magnetism in the helical, the conical and the ferro-magnetically polarized phases in an itinerant helical magnet, MnSi, has been studied by an extended 29 Si NMR at zero field and under external magnetic fields. The temperature dependence of staggered moment, MQ(T), determined by the 29 Si NMR frequency, (T), and nuclear relaxation rate, 1/T1(T) is in general accord with the SCR theory for weak itinerant ferromagnetic metals and its extension. The external field dependence of resonance frequency, (H), follows a vector sum of the contributions from atomic hyperfine and macroscopic fields with a field induced moment characteristic to the itinerant magnets. A discontinuous jump of the resonance frequency at the critical field, Hc, between the conical and the polarized phases has also been found that suggests a first order like change of the electronic states at Hc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.