We present polarimetric differential imaging (PDI) data of the circumstellar disk around the Herbig Ae/Be star HD100546 obtained with VLT/NACO. We resolve the disk in polarized light in the H and K s filter between ∼0.1-1.4 ′′ (i.e., ∼10-140 AU). The innermost disk regions are directly imaged for the first time and the mean apparent disk inclination and position angle are derived. The surface brightness along the disk major axis drops off roughly with S(r) ∝ r −3 but has a maximum around 0.15 ′′ suggesting a marginal detection of the main disk inner rim at ∼15 AU. We find a significant brightness asymmetry along the disk minor axis in both filters with the far side of the disk appearing brighter than the near side. This enhanced backward scattering and a low total polarization degree of the scattered disk flux of 14 +19−8 % suggests that the dust grains on the disk surface are larger than typical ISM grains. Empirical scattering functions reveal the backward scattering peak at the largest scattering angles and a second maximum for the smallest scattering angles. This indicates a second dust grain population preferably forward scattering and smaller in size. It shows that, relatively, in the inner disk regions (40-50 AU) a higher fraction of larger grains is found compared to the outer disk regions (100-110 AU). Finally, our images reveal distinct substructures between 25-35 AU physical separation from the star and we discuss the possible origin for the two features in the context of ongoing planet formation.
Nonlinear interferometers allow for mid-infrared spectroscopy with near-infrared detection using correlated photons. Previous implementations have demonstrated a spectral resolution limited by spectrally selective detection. In our work, we demonstrate mid-infrared transmission spectroscopy in a nonlinear interferometer using single-pixel near-infrared detection and Fourier-transform analysis. A sub-wavenumber spectral resolution allows for rotational-lineresolving spectroscopy of gaseous samples in a spectral bandwidth of over 700 cm −1 . We use methane transmission spectra around 3.3 µm wavelength to characterize the spectral resolution, noise limitations and transmission accuracy of our device. The combination of nonlinear interferometry and Fourier-transform analysis paves the way towards performant and efficient mid-infrared spectroscopy with near-infrared detection.
Nonlinear interferometers allow spectroscopy in the mid-infrared range by detecting correlated visible light, for which non-cooled detectors with higher specific detectivity and lower dark count rates are available. We present a new approach for the registration of spectral information, which combines a nonlinear interferometer using non-degenerate spontaneous parametric down-conversion (SPDC) with a Fourier-transform spectroscopy concept. In order to increase the spectral coverage, we use broadband non-collinear SPDC in periodically poled LiNbO 3 . Without the need for spectrally selective detection, continuous spectra with a spectral bandwidth of more than 100 cm −1 are achieved. We demonstrate transmission spectra of a polypropylene sample measured with 6 cm −1 resolution in the spectral range between 3.2 µm to 3.9 µm.
Mid-infrared spectroscopy is an essential analytical method in science and industry. Unlike in the near-infrared range, grating spectrometers for the mid-infrared are rarely employed, mostly due to the limited availability and performance of suitable line array detectors. In this work, continuous-wave nonlinear-optical upconversion is used to enable mid-infrared spectroscopy. A broad spectral window between 3.7 and 4.7 μm is upconverted to 825 - 867 nm for detection on a silicon-camera-based near-infrared grating spectrometer with a high sensitivity down to sub-picowatt of input power. A theoretical model is presented that accurately describes the upconversion process and the total system behavior. Spectroscopic flame emission measurements demonstrate the applicability towards the analysis of highly dynamic processes.
In upconversion processes, two or more low-energy photons are converted into one higher-energy photon. Besides other applications, upconversion has the potential to decrease sub-band-gap losses in silicon solar cells. Unfortunately, upconverting materials known today show quantum yields, which are too low for this application. In order to improve the upconversion quantum yield, two parameters can be tuned using photonic structures: first, the irradiance can be increased within the structure. This is beneficial, as upconversion is a non-linear process. Second, the rates of the radiative transitions between ionic states within the upconverter material can be altered due to a varied local density of photonic states. In this paper, we present a theoretical model of the impact of a photonic structure on upconversion and test this model in a simulation based analysis of the upconverter material β -NaYF(4):20% Er(3+) within a dielectric waveguide structure. The simulation combines a finite-difference time-domain simulation model that describes the variations of the irradiance and the change of the local density of photonic states within a photonic structure, with a rate equation model of the upconversion processes. We find that averaged over the investigated structure the upconversion luminescence is increased by a factor of 3.3, and the upconversion quantum yield can be improved in average by a factor of 1.8 compared to the case without the structure for an initial irradiance of 200 Wm(-2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.