Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG “combo” pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting “clean” PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach.
Body condition score (BCS) is considered an important tool for management of dairy cattle. The feasibility of estimating the BCS from digital images has been demonstrated in recent work. Regression machines have been successfully employed for automatic BCS estimation, taking into account information of the overall shape or information extracted on anatomical points of the shape. Despite the progress in this research area, such studies have not addressed the problem of modeling the shape of cows to build a robust descriptor for automatic BCS estimation. Moreover, a benchmark data set of images meant as a point of reference for quantitative evaluation and comparison of different automatic estimation methods for BCS is lacking. The main objective of this study was to develop a technique that was able to describe the body shape of cows in a reconstructive way. Images, used to build a benchmark data set for developing an automatic system for BCS, were taken using a camera placed above an exit gate from the milking robot. The camera was positioned at 3 m from the ground and in such a position to capture images of the rear, dorsal pelvic, and loin area of cows. The BCS of each cow was estimated on site by 2 technicians and associated to the cow images. The benchmark data set contained 286 images with associated BCS, anatomical points, and shapes. It was used for quantitative evaluation. A set of example cow body shapes was created. Linear and polynomial kernel principal component analysis was used to reconstruct shapes of cows using a linear combination of basic shapes constructed from the example database. In this manner, a cow's body shape was described by considering her variability from the average shape. The method produced a compact description of the shape to be used for automatic estimation of BCS. Model validation showed that the polynomial model proposed in this study performs better (error=0.31) than other state-of-the-art methods in estimating BCS even at the extreme values of BCS scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.