We introduce the use of the Zig-Zag sampler to the problem of sampling conditional diffusion processes (diffusion bridges). The Zig-Zag sampler is a rejection-free sampling scheme based on a non-reversible continuous piecewise deterministic Markov process. Similar to the Lévy–Ciesielski construction of a Brownian motion, we expand the diffusion path in a truncated Faber–Schauder basis. The coefficients within the basis are sampled using a Zig-Zag sampler. A key innovation is the use of the fully local algorithm for the Zig-Zag sampler that allows to exploit the sparsity structure implied by the dependency graph of the coefficients and by the subsampling technique to reduce the complexity of the algorithm. We illustrate the performance of the proposed methods in a number of examples.
We construct a new class of efficient Monte Carlo methods based on continuous-time piecewise deterministic Markov processes (PDMPs) suitable for inference in high dimensional sparse models, i.e. models for which there is prior knowledge that many coordinates are likely to be exactly 0. This is achieved with the fairly simple idea of endowing existing PDMP samplers with “sticky” coordinate axes, coordinate planes etc. Upon hitting those subspaces, an event is triggered during which the process sticks to the subspace, this way spending some time in a sub-model. This results in non-reversible jumps between different (sub-)models. While we show that PDMP samplers in general can be made sticky, we mainly focus on the Zig-Zag sampler. Compared to the Gibbs sampler for variable selection, we heuristically derive favourable dependence of the Sticky Zig-Zag sampler on dimension and data size. The computational efficiency of the Sticky Zig-Zag sampler is further established through numerical experiments where both the sample size and the dimension of the parameter space are large.
We construct a new class of efficient Monte Carlo methods based on continuous-time piecewise deterministic Markov processes (PDMPs) suitable for inference in high dimensional sparse models, i.e. models for which there is prior knowledge that many coordinates are likely to be exactly 0. This is achieved with the fairly simple idea of endowing existing PDMP samplers with sticky coordinate axes, coordinate planes etc. Upon hitting those subspaces, an event is triggered, during which the process sticks to the subspace, this way spending some time in a sub-model. That introduces non-reversible jumps between different (sub-)models. The approach can also be combined with local implementations of PDMP samplers to target measures that additionally exhibit a sparse dependency structure. We illustrate the new method for a number of statistical models where both the sample size N and the dimensionality d of the parameter space are large.
We introduce the use of the Zig-Zag sampler to the problem of sampling of conditional diffusion processes (diffusion bridges). The Zig-Zag sampler is a rejection-free sampling scheme based on a non-reversible continuous piecewise deterministic Markov process. Similar to the Lévy-Ciesielski construction of a Brownian motion, we expand the diffusion path in a truncated Faber-Schauder basis. The coefficients within the basis are sampled using a Zig-Zag sampler. A key innovation is the use of a local version of the Zig-Zag sampler that allows to exploit the sparse dependency structure of the coefficients of the Faber-Schauder expansion to reduce the complexity of the algorithm. We illustrate the performance of the proposed methods in a number of examples. Contrary to some other Markov Chain Monte Carlo methods, our approach works well in case of strong nonlinearity in the drift and multimodal distributions of sample paths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.