Accurate localization of phytoalexins is a key for better understanding their role. This work aims to localize stilbenes, the main phytoalexins of grapevine. The cellular localization of stilbene fluorescence induced by Plasmopara viticola , the agent of downy mildew, was determined in grapevine leaves of very susceptible, susceptible, and partially resistant genotypes during infection. Laser scanning confocal microscopy and microspectrofluorimetry were used to acquire UV-excited autofluorescence three-dimensional images and spectra of grapevine leaves 5–6 days after inoculation. This noninvasive technique of investigation in vivo was completed with in vitro spectrofluorimetric studies on pure stilbenes as their fluorescence is largely affected by the physicochemical environment in various leaf compartments. Viscosity was the major physicochemical factor influencing stilbene fluorescence intensity, modifying fluorescence yield by more than two orders of magnitude. Striking differences in the localization of stilbene fluorescence induced by P. viticola were observed between the different genotypes. All inoculated genotypes displayed stilbene fluorescence in cell walls of guard cells and periclinal cell walls of epidermal cells. Higher fluorescence intensity was observed in guard-cell walls than in any other compartment due to increased local viscosity. In addition stilbene fluorescence was found in epidermal cell vacuoles of the susceptible genotype and in the infected spongy parenchyma of the partially resistant genotype. The very susceptible genotype was devoid of fluorescence both in the epidermal vacuoles and the mesophyll. This strongly suggests that the resistance of grapevine leaves to P. viticola is correlated with the pattern of localization of induced stilbenes in host tissues.
Flavonols and hydroxycinnamic acids are known to contribute to plant resistance against pathogens, but there are few reports on the implication of flavonols in the resistance of grapevine against Plasmopara viticola, and none on the involvement of hydroxycinnamic acids. In order to analyze the effect of flavonols on P. viticola infection, variable amounts of flavonols were induced by different light conditions in otherwise phenologically identical leaves. Differences in content of leaf hydroxycinnamic acids were induced at the same time. A non-invasive monitoring of flavonols and hydroxycinnamic acids was performed with Dualex leaf-clip optical sensors. Whatever the light condition, there were no significant changes in flavonol or in hydroxycinnamic acid contents for control and inoculated leaves during the development of P. viticola until 6 days after inoculation. The violet-blue autofluorescence of stilbenes, the main phytoalexins of grapevine that accumulate in inoculated leaves, was used as an indicator of infection by P. viticola. The implication of leaf constitutive flavonols and hydroxycinnamic acids in the defence of Vitis vinifera against P. viticola could be investigated in vivo thanks to this indicator. The increase in stilbene violet-blue autofluorescence started earlier for leaves with low flavonol content than for leaves with higher content, suggesting that constitutive flavonols are able to slow down the infection by P. viticola. On the contrary, constitutive hydroxycinnamic acids did not seem to play a role in defence against P. viticola. The non-destructive nature of the methods used alleviates the major problem of destructive experiments: the large variability in leaf phenolic contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.