Abstract-We introduce a nonlocal discrete regularization framework on weighted graphs of the arbitrary topologies for image and manifold processing. The approach considers the problem as a variational one, which consists in minimizing a weighted sum of two energy terms: a regularization one that uses a discrete weighted p-Dirichlet energy, and an approximation one. This is the discrete analogue of recent continuous Euclidean nonlocal regularization functionals. The proposed formulation leads to a family of simple and fast nonlinear processing methods based on the weighted p-Laplace operator, parameterized by the degree p of regularity, the graph structure and the graph weight function. These discrete processing methods provide a graph-based version of recently proposed semi-local or nonlocal processing methods used in image and mesh processing, such as the bilateral filter, the TV digital filter or the nonlocal means filter. It works with equal ease on regular 2D-3D images, manifolds or any data. We illustrate the abilities of the approach by applying it to various types of images, meshes, manifolds and data represented as graphs.
This article proposes a new framework to regularize linear inverse problems using the total variation on non-local graphs. This nonlocal graph allows to adapt the penalization to the geometry of the underlying function to recover. A fast algorithm computes iteratively both the solution of the regularization process and the non-local graph adapted to this solution. We show numerical applications of this method to the resolution of image processing inverse problems such as inpainting, super-resolution and compressive sampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.