ObjectiveThe adoption of electronic health records (EHRs) has produced enormous amounts of data, creating research opportunities in clinical data sciences. Several concept recognition systems have been developed to facilitate clinical information extraction from these data. While studies exist that compare the performance of many concept recognition systems, they are typically developed internally and may be biased due to different internal implementations, parameters used, and limited number of systems included in the evaluations. The goal of this research is to evaluate the performance of existing systems to retrieve relevant clinical concepts from EHRs.MethodsWe investigated six concept recognition systems, including CLAMP, cTAKES, MetaMap, NCBO Annotator, QuickUMLS, and ScispaCy. Clinical concepts extracted included procedures, disorders, medications, and anatomical location. The system performance was evaluated on two datasets: the 2010 i2b2 and the MIMIC-III. Additionally, we assessed the performance of these systems in five challenging situations, including negation, severity, abbreviation, ambiguity, and misspelling.ResultsFor clinical concept extraction, CLAMP achieved the best performance on exact and inexact matching, with an F-score of 0.70 and 0.94, respectively, on i2b2; and 0.39 and 0.50, respectively, on MIMIC-III. Across the five challenging situations, ScispaCy excelled in extracting abbreviation information (F-score: 0.86) followed by NCBO Annotator (F-score: 0.79). CLAMP outperformed in extracting severity terms (F-score 0.73) followed by NCBO Annotator (F-score: 0.68). CLAMP outperformed other systems in extracting negated concepts (F-score 0.63).ConclusionsSeveral concept recognition systems exist to extract clinical information from unstructured data. This study provides an external evaluation by end-users of six commonly used systems across different extraction tasks. Our findings suggest that CLAMP provides the most comprehensive set of annotations for clinical concept extraction tasks and associated challenges. Comparing standard extraction tasks across systems provides guidance to other clinical researchers when selecting a concept recognition system relevant to their clinical information extraction task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.