Keratinocytes are responsible for reepithelialization and restoration of the epidermal barrier during wound healing. The influence of sensory neurons on this mechanism is not fully understood. We tested whether sensory neurons influence wound closure via the secretion of the neuropeptide substance P (SP) with a new tissue-engineered wound healing model made of an upper-perforated epidermal compartment reconstructed with human keratinocytes expressing green fluorescent protein, stacked over a dermal compartment, innervated or not with sensory neurons. We showed that sensory neurons secreted SP in the construct and induced a two times faster wound closure in vitro. This effect was partially reproduced by addition of SP in the model without neurons, and completely blocked by a treatment with a specific antagonist of the SP receptor neurokinin-1 expressed by keratinocytes. However, this antagonist did not compromise wound closure compared with the control. Similar results were obtained when the model with or without neurons was transplanted on CD1 mice, while wound closure occurred faster. We conclude that sensory neurons play an important, but not essential, role in wound healing, even in absence of the immune system. This model is promising to study the influence of the nervous system on reepithelialization in normal and pathological conditions.
Burns not only destroy the barrier function of the skin but also alter the perceptions of pain, temperature, and touch. Different strategies have been developed over the years to cover deep and extensive burns with the ultimate goal of regenerating the barrier function of the epidermis while recovering an acceptable aesthetic aspect. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Cutaneous nerve regeneration can occur from the nerve endings of the wound bed, but it is often compromised by scar formation or anarchic wound healing. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients' quality of life. In addition, the cutaneous nerve network has been recently highlighted to play an important role in epidermal homeostasis and may be essential at least in the early phase of wound healing through the induction of neurogenic inflammation. Although the nerve regeneration process was studied largely in the context of nerve transections, very few studies have been aimed at developing strategies to improve it in the context of cutaneous wound healing. In this concise review, we provide a description of the characteristics of and current treatments for extensive burns, including tissue-engineered skin approaches to improve cutaneous nerve regeneration, and describe prospective uses for autologous skin-derived adult stem cells to enhance recovery of the skin's sense of touch. STEM CELLS TRANSLATIONAL MEDICINE 2013;2:545-551
Background: The corneal epithelium (CE) overlays a stroma, which is derived from neural crest cells, and appears to be committed during chick development, but appears still labile in adult rabbit. Its specification was hitherto regarded as resolved and dependent upon the lens, although without experimental support. Here, we challenged CE fate by changing its environment at different stages. Results: Recombination with a dermis showed that CE commitment is linked to stroma formation, which results in Pax6 stabilization in both species. Surgical ablation shows that CE specification has already taken place when the lens placode invaginates, while removal of the early lens placode led to lens renewal. To block lens formation, bone morphogenetic protein (BMP) signaling, one of its last inducing factors, was inhibited by over-expression of Gremlin in the ocular ectoderm. This resulted in lens-less embryos which formed a corneal epithelium if they survived 2 weeks. Conclusion: The corneal epithelium and lens share a common pool of precursors. The adoption of the CE fate might be dependent on the loss of a lens placode favoring environment. The corneal fate is definitively stabilized by the migration of Gremlinexpressing neural crest cells in the lens peripheral ectoderm. Developmental Dynamics 242:401-413, 2013. V C 2013 Wiley Periodicals, Inc.Key words: cornea; lens; epidermis; specification; commitment Key findings:Inhibition of BMP signaling prevents lens but not corneal epithelium formation: the specification of the cornea does not require lens formation. A common pool of eye ectodermal precursors arising early in development can give rise to either lens or corneal epithelium with their fate ultimately being determined by whether the environment is supportive of lens placode formation or not. This pool can renew a surgically ablated lens placodal ectoderm as long as the environment is still conducive to the last step of lens induction. The commitment of corneal epithelium correlates with both the loss of its capacity to down-regulate Pax6 as well as with the formation of its associated stroma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.