Ancient fluvial deposits typically display repetitive changes in their depositional architecture such as alternating intervals of coarse-grained highly amalgamated (HA), laterally-stacked, channel bodies, and finer-grained less amalgamated (LA), vertically-stacked, channels encased in floodplain deposits. Such patterns are usually ascribed to slower, respectively higher, rates of base level rise (accommodation). However, “upstream” factors such as water discharge and sediment flux also play a potential role in determining stratigraphic architecture, yet this possibility has never been tested despite the recent advances in the field of palaeohydraulic reconstructions from fluvial accumulations. Here, we chronicle riverbed gradient evolution within three Middle Eocene (~ 40 Ma) fluvial HA-LA sequences in the Escanilla Formation in the south-Pyrenean foreland basin. This work documents, for the first time in a fossil fluvial system, how the ancient riverbed systematically evolved from lower slopes in coarser-grained HA intervals, and higher slopes in finer-grained LA intervals, suggesting that bed slope changes were determined primarily by climate-controlled water discharge variations rather than base level changes as often hypothesized. This highlights the important connection between climate and landscape evolution and has fundamental implications for our ability to reconstruct ancient hydroclimates from the interpretation of fluvial sedimentary sequences.
Tsunamis are marked by distinct phases of uprush during coastal inundation and backwash when tsunami water recedes. Especially in the case of a steep coastal profile, the return flow may operate in a Froude-supercritical regime, eroding the flooded area and transporting large volumes of sediment seawards. Important sediment accumulation occurs when the supercritical flow goes through a hydraulic jump where it becomes subcritical upon deceleration. An inferred example in coarse-grained, mixed carbonates from the Lower Pleistocene on Rhodes (Greece) is described, with offshore bars up to 10 m long with scour-and-fill structures and steep antidune stratification. In finer-grained sandy depositional systems such structures may be much longer, up to hundreds of metres. It is suggested here that, analogous to some turbidite beds, the apparent lack of structures or the presence of faint stratification that is common for graded sand layers within marine tsunamiites may in fact consist of extremely low-angle, landward-dipping backset-strata that formed under a landward-migrating hydraulic jump during the basinward retreat of tsunami water. Numerical simulations that focus on the internal stratification of backwash-generated offshore bars support this hypothesis. The recognition of such deposits in the sedimentary record enlarges the toolbox for assessing the past frequency of tsunamis in coastal areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.