We have developed PhenoTips: open source software for collecting and analyzing phenotypic information for patients with genetic disorders. Our software combines an easy-to-use interface, compatible with any device that runs a Web browser, with a standardized database back end. The PhenoTips' user interface closely mirrors clinician workflows so as to facilitate the recording of observations made during the patient encounter. Collected data include demographics, medical history, family history, physical and laboratory measurements, physical findings, and additional notes. Phenotypic information is represented using the Human Phenotype Ontology; however, the complexity of the ontology is hidden behind a user interface, which combines simple selection of common phenotypes with error-tolerant, predictive search of the entire ontology. PhenoTips supports accurate diagnosis by analyzing the entered data, then suggesting additional clinical investigations and providing Online Mendelian Inheritance in Man (OMIM) links to likely disorders. By collecting, classifying, and analyzing phenotypic information during the patient encounter, PhenoTips allows for streamlining of clinic workflow, efficient data entry, improved diagnosis, standardization of collected patient phenotypes, and sharing of anonymized patient phenotype data for the study of rare disorders. Our source code and a demo version of PhenoTips are available at http://phenotips.org.
Branchio-oculo-facial syndrome (BOFS; OMIM#113620) is a rare autosomal dominant craniofacial disorder with variable expression. Major features include cutaneous and ocular abnormalities, characteristic facies, renal, ectodermal, and temporal bone anomalies. Having determined that mutations involving TFAP2A result in BOFS, we studied a total of 30 families (41 affected individuals); 26/30 (87%) fulfilled our cardinal diagnostic criteria. The original family with the 3.2 Mb deletion including the TFAP2A gene remains the only BOFS family without the typical CL/P and the only family with a deletion. We have identified a hotspot region in the highly conserved exons 4 and 5 of TFAP2A that harbors missense mutations in 27/30 (90%) families. Several of these mutations are recurrent. Mosaicism was detected in one family. To date, genetic heterogeneity has not been observed. Although the cardinal criteria for BOFS have been based on the presence of each of the core defects, an affected family member or thymic remnant, we documented TFAP2A mutations in three (10%) probands in our series without a classic cervical cutaneous defect or ectopic thymus. Temporal bone anomalies were identified in 3/5 patients investigated. The occurrence of CL/P, premature graying, coloboma, heterochromia irides, and ectopic thymus, are evidence for BOFS as a neurocristopathy. Intrafamilial clinical variability can be marked. Although there does not appear to be mutation-specific genotype-phenotype correlations at this time, more patients need to be studied. Clinical testing for TFAP2A mutations is now available and will assist geneticists in confirming the typical cases or excluding the diagnosis in atypical cases.
BackgroundThe chromodomain helicase DNA binding domain (CHD) proteins modulate gene expression via their ability to remodel chromatin structure and influence histone acetylation. Recent studies have shown that CHD2 protein plays a critical role in embryonic development, tumor suppression and survival. Like other genes encoding members of the CHD family, pathogenic mutations in the CHD2 gene are expected to be implicated in human disease. In fact, there is emerging evidence suggesting that CHD2 might contribute to a broad spectrum of neurodevelopmental disorders. Despite growing evidence, a description of the full phenotypic spectrum of this condition is lacking.MethodsWe conducted a multicentre study to identify and characterise the clinical features associated with haploinsufficiency of CHD2. Patients with deletions of this gene were identified from among broadly ascertained clinical cohorts undergoing genomic microarray analysis for developmental delay, congenital anomalies and/or autism spectrum disorder.ResultsDetailed clinical assessments by clinical geneticists showed recurrent clinical symptoms, including developmental delay, intellectual disability, epilepsy, behavioural problems and autism-like features without characteristic facial gestalt or brain malformations observed on magnetic resonance imaging scans. Parental analysis showed that the deletions affecting CHD2 were de novo in all four patients, and analysis of high-resolution microarray data derived from 26,826 unaffected controls showed no deletions of this gene.ConclusionsThe results of this study, in addition to our review of the literature, support a causative role of CHD2 haploinsufficiency in developmental delay, intellectual disability, epilepsy and behavioural problems, with phenotypic variability between individuals.
Jacobsen syndrome (JS) is a rare contiguous gene disorder characterized by a deletion within the distal part of the long arm of chromosome 11 ranging in size from 7 to 20 Mb. The clinical findings include characteristic dysmorphic features, growth and psychomotor delays and developmental anomalies involving the brain, eyes, heart, kidneys, immune, hematologic, endocrine, and gastrointestinal systems. The majority of cases are due to a terminal deletion of 11q; however interstitial deletions have also been reported. We report on a child with clinical manifestations consistent with JS who had a 2.899 Mb interstitial deletion at 11q24.2-q24.3 which is the smallest interstitial deletion reported so far to our knowledge. This deletion includes the KIRREL3 gene, and given our patient's history of neurocognitive delay and autism spectrum disorder, it raises the possibility that this gene is a candidate for the social and expressive language delay observed in our patient.
GBRs (GABA(B) receptors; where GABA stands for gamma-aminobutyric acid) are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. In vitro assays have previously demonstrated that these receptors are heterodimers assembled from two homologous subunits, GBR1 and GBR2, neither of which is capable of producing functional GBR on their own. We have used co-immunoprecipitation in combination with bioluminescence and fluorescence resonance energy transfer approaches in living cells to assess directly the interaction between GBR subunits and determine their subcellular localization. The results show that, in addition to forming heterodimers, GBR1 and GBR2 can associate as stable homodimers. Confocal microscopy indicates that, while GBR1/GBR1 homodimers are retained in the endoplasmic reticulum and endoplasmic reticulum-Golgi intermediate compartment, both GBR2/GBR2 homodimers and GBR1/GBR2 heterodimers are present at the plasma membrane. Although these observations shed new light on the assembly of GBR complexes, they raise questions about the potential functional roles of GBR1 and GBR2 homodimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.