We prove that for every centrally symmetric convex polygon Q, there exists a constant α such that any αk-fold covering of the plane by translates of Q can be decomposed into k coverings. This improves on a quadratic upper bound proved by Pach and Tóth (SoCG'07). The question is motivated by a sensor network problem, in which a region has to be monitored by sensors with limited battery lifetime.
We investigate the global scheduling of sporadic, implicit deadline, real-time task systems on multiprocessor platforms. We provide a task model which integrates job parallelism. We prove that the time-complexity of the feasibility problem of these systems is linear relatively to the number of (sporadic) tasks for a fixed number of processors. We propose a scheduling algorithm theoretically optimal (i.e., preemptions and migrations neglected). Moreover, we provide an exact feasibility utilization bound. Lastly, we propose a technique to limit the number of migrations and preemptions.
Abstract. Given a set of points in R 2 or R 3 , we aim to color them such that every region of a certain family (for instance disks) containing at least a certain number of points contains points of many different colors. Using k colors, it is not always possible to ensure that every region containing k points contains all k colors. Thus, we introduce two relaxations: either we allow the number of colors to increase to c(k), or we require that the number of points in each region increases to p(k). We give upper bounds on c(k) and p(k) for halfspaces, disks, and pseudodisks. We also consider the dual question, where we want to color regions instead of points. This is related to previous results of Pach, Tardos and Tóth on decompositions of coverings.
Abstract. We consider a coloring problem on dynamic, one-dimensional point sets: points appearing and disappearing on a line at given times. We wish to color them with k colors so that at any time, any sequence of p(k) consecutive points, for some function p, contains at least one point of each color.We prove that no such function p(k) exists in general. However, in the restricted case in which points appear gradually, but never disappear, we give a coloring algorithm guaranteeing the property at any time with p(k) = 3k − 2.This can be interpreted as coloring point sets in R 2 with k colors such that any bottomless rectangle containing at least 3k − 2 points contains at least one point of each color. Here a bottomless rectangle is an axis-aligned rectangle whose bottom edge is below the lowest point of the set.For this problem, we also prove a lower bound p(k) > ck, where c > 1.67. Hence for every k there exists a point set, every k-coloring of which is such that there exists a bottomless rectangle containing ck points and missing at least one of the k colors. Chen et al. (2009) proved that no such function p(k) exists in the case of general axis-aligned rectangles. Our result also complements recent results from Keszegh and Pálvölgyi on cover-decomposability of octants (2011, 2012).
We prove the following generalised empty pentagon theorem: for every integer ℓ ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the "big line or big clique" conjecture of Kára, Pór, and Wood [Discrete Comput. Geom. 34 (3):497-506, 2005].2000 Mathematics Subject Classification. 52C10 Erdős problems and related topics of discrete geometry, 05D10 Ramsey theory.Key words and phrases. Erdős-Szekeres Theorem, happy end problem, big line or big clique conjecture, empty quadrilateral, empty pentagon, empty hexagon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.