International audienceAutomatic image interpretation is often achieved by first performing a segmentation of the image (i.e., gathering neighbouring pixels into homogeneous regions) and then applying a supervised region-based classification. In such a process, the quality of the segmentation step is of great importance in the final classified result. Nevertheless, whereas the classification step takes advantage from some prior knowledge such as learning sample pixels, the segmentation step rarely does. In this paper, we propose to involve such samples through machine learning procedures to improve the segmentation process. More precisely, we consider the watershed transform segmentation algorithm, and rely on both a fuzzy supervised classification procedure and a genetic algorithm in order to respectively build the elevation map used in the watershed paradigm and tune segmentation parameters. We also propose new criteria for segmentation evaluation based on learning samples. We have evaluated our method on remotely sensed images. The results assert the relevance of machine learning as a way to introduce knowledge within the watershed segmentation process
International audienceRemotely sensed images are more and more precise (spatial resolution under 1 meter). For these images, objects of interest contains several pixels. Generally a segmentation method is used to cluster pixels that belong to the same objects before classification. The quality of such a segmentation method is crucial to achieve good clasification results. In this paper, a new segmentation method is proposed which aims to improve the classical watershed segmentation method based on multispectral gradient. The proposed method uses some labeled samples with classes of interest to induce a new dissimilarity between pixels which defines a new representation space to be used
Automatic image interpretation could be achieved by first performing a segmentation of the image, i.e. aggregating similar pixels to form regions, then use a supervised regionbased classification. In such a process, the quality of the segmentation step is of great importance. Nevertheless, whereas the classification step takes advantage from some prior knowledge such as learning sample pixels, the segmentation step rarely does. In this paper, we propose to involve machine learning to improve the segmentation process using the watershed transform. More precisely, we apply a fuzzy supervised classification and a genetic algorithm in order to respectively generate the elevation map used in the watershed transform and tune segmentation parameters. The results from our evolutionary supervised watershed algorithm confirm the relevance of machine learning to introduce knowledge in the watershed segmentation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.