Cell migration requires spatial and temporal processes that detect and transfer extracellular stimuli into intracellular signals. The platelet-derived growth factor (PDGF) receptor is a cell surface receptor on fibroblasts that regulates proliferation and chemotaxis in response to PDGF. How the PDGF signal is transmitted accurately through the receptor into cells is an unresolved question. Here, we report a new intracellular signaling pathway by which DOCK4, a Rac1 guanine exchange factor, and Dynamin regulate cell migration by PDGF receptor endocytosis. We showed by a series of biochemical and microscopy techniques that Grb2 serves as an adaptor protein in the formation of a ternary complex between the PDGF receptor, DOCK4, and Dynamin, which is formed at the leading edge of cells. We found that this ternary complex regulates PDGFdependent cell migration by promoting PDGF receptor endocytosis and Rac1 activation at the cell membrane. This study revealed a new mechanism by which cell migration is regulated by PDGF receptor endocytosis.Chemoattractants bind to cell surface receptors, resulting in the cytoskeletal reorganization that permits the migration of cells toward a stimulus. In fibroblasts, the platelet-derived growth factor receptor  (PDGFR) is a cell surface receptor tyrosine kinase (RTK) that regulates cell proliferation and chemotaxis in response to PDGF. PDGF binding activates PDGF receptor autophosphorylation, which in turn mediates a series of intracellular signaling cascades initiated by the association of SH2 domain-containing adaptor proteins (25). The adaptor protein Grb2 at the plasma membrane binds to Ras exchange factor Sos1, activating mitogen-activated protein kinase (MAPK) and cell proliferation signals (19). Grb2 also plays a critical role in receptor internalization via its interaction with dynamin, an exchange factor that facilitates receptor entry into endocytic vesicles (32). Grb2 regulates ubiquitination and the degradation of the receptor via its interaction with Cbl, an E3 ubiquitin ligase (33). While the role of Grb2 in modulating receptor levels and facilitating growth factor-dependent mitogenic signals is defined, its role in coordinating receptor-dependent chemotaxis has not been elucidated.The small GTPase Rac1 plays a crucial role in PDGF-mediated chemotaxis by regulating cortical actin at the leading edge of cells. PDGF receptor activation promotes GTP loading and the translocation of Rac1 to the cell membrane via guanine exchange factors (GEFs). The DOCK family of Rac1 GEFs, also called CDM proteins (for Caenorhabditis elegans ced-5, vertebrate DOCK180, and Drosophila myoblast city), are regulators of cell migration and have been implicated in various biological processes, such as lymphocyte migration, phagocytosis, and cancer progression (6,10,30,35). In migrating fibroblasts, DOCK proteins localize to the cell's leading edge via their interaction with the phospholipid PIP3, but a direct molecular link to PDGF has not been established (5). Biochemical studies show that R...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.