A microscopic quantum system under continuous observation exhibits at random times sudden jumps between its states. The detection of this quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system's evolution. Whereas quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, this has proved more challenging for light quanta. Standard photodetectors absorb light and are thus unable to detect the same photon twice. It is therefore necessary to use a transparent counter that can 'see' photons without destroying them. Moreover, the light needs to be stored for durations much longer than the QND detection time. Here we report an experiment in which we fulfil these challenging conditions and observe quantum jumps in the photon number. Microwave photons are stored in a superconducting cavity for times up to half a second, and are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms, highly correlated in the same state, are interrupted by sudden state switchings. These telegraphic signals record the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons should open new perspectives for the exploration of the quantum-to-classical boundary.
Feedback loops are central to most classical control procedures. A controller compares the signal measured by a sensor (system output) with the target value or set-point. It then adjusts an actuator (system input) to stabilize the signal around the target value. Generalizing this scheme to stabilize a micro-system's quantum state relies on quantum feedback, which must overcome a fundamental difficulty: the sensor measurements cause a random back-action on the system. An optimal compromise uses weak measurements, providing partial information with minimal perturbation. The controller should include the effect of this perturbation in the computation of the actuator's operation, which brings the incrementally perturbed state closer to the target. Although some aspects of this scenario have been experimentally demonstrated for the control of quantum or classical micro-system variables, continuous feedback loop operations that permanently stabilize quantum systems around a target state have not yet been realized. Here we have implemented such a real-time stabilizing quantum feedback scheme following a method inspired by ref. 13. It prepares on demand photon number states (Fock states) of a microwave field in a superconducting cavity, and subsequently reverses the effects of decoherence-induced field quantum jumps. The sensor is a beam of atoms crossing the cavity, which repeatedly performs weak quantum non-demolition measurements of the photon number. The controller is implemented in a real-time computer commanding the actuator, which injects adjusted small classical fields into the cavity between measurements. The microwave field is a quantum oscillator usable as a quantum memory or as a quantum bus swapping information between atoms. Our experiment demonstrates that active control can generate non-classical states of this oscillator and combat their decoherence, and is a significant step towards the implementation of complex quantum information operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.