Abstract. Since J.Wahl ([27]), it is known that degree d plane curves having some fixed numbers of nodes and cusps as its only singularities can be represented by a scheme, let say H, which can be singular. In Wahl's example, H is singular along a subscheme F but the induced reduced scheme H red is smooth along F . In this work, we construct explicitly a family of plane curves with nodes and cusps which are represented by singular points of H red .To this end, we begin to show that the Hilbert scheme of smooth and connected space curves of degree 12 and genus 15 is irreducible and generically smooth. It follows that it is singular along a hypersurface (3.10). This example is minimal in the sense that the Hilbert scheme of smooth and connected space curves is regular in codimension 1 for d < 12 (B.2). Finally we construct our plane curves from the space curves represented by points of this hypersurface (4.7).Résumé On sait depuis J.Wahl([27]) que les courbes planes de degré fixé ayant pour seules singularités des noeuds et des cusps en nombres imposés sont représentées par un schéma H qui peutêtre singulier. Wahl exhibe une famille de courbes comme ci-dessus dont les points correspondants sont singuliers dans H mais lisses dans H red , la structure réduite sous-jacente. Ici, on construit explicitement une famille de courbes planesà noeuds età cusps représentées par des points singuliers de H red .Pour ce faire, on montre tout d'abord que le schéma de Hilbert des courbes lisses et connexes de degré 12 et de genre 15 de l'espace projectif complexe est irréductible et génériquement lisse ; puis qu'il est singulier le long d'une hypersurface (3.10). Cet exemple est minimal dans le sens où le schéma de Hilbert des courbes lisses et connexes de degré d et genre g est lisse en codimension 1 pour d < 12 (B.2). Enfin, on construit les courbes planesà partir des courbes gauches représentées par cette hypersurface (4.7)
We check that the Hilbert scheme, H d,g , of smooth and connected curves of degree d and genus g in projective three-dimensional space over C is smooth provided that d 11. The proof uses essentially our good knowledge of curves lying on cubic surfaces and the possibility to endow a curve having a special normal bundle with a double structure of high arithmetic genus. Then we give some partial results in the case of degree 12. Namely, we obtain that H 12,g is smooth for g < 15 except cases g = 11, 12, for which we were able to establish only that H 12,g is smooth in codimension 1. This shows that (12, 15) is the lexicographically first pair (d, g) such that H d,g is singular in codimension 1.
Résumé. Dans cette note, on montre que les courbes, lisses connexes, de degré d et genre g, tracées sur une surface quartique normale variable de P 3 , et n'ý etant pas intersection complète, forment des familles de dimensions g + 33. Cette majoration est la meilleure possible. Comme application on prouve que le schéma de Hilbert des courbes lisses connexes de P 3 de degré 12 et genre 13 est irréductible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.