This article proposes a unified framework for understanding creative problem solving, namely, the explicit-implicit interaction theory. This new theory of creative problem solving constitutes an attempt at providing a more unified explanation of relevant phenomena (in part by reinterpreting/integrating various fragmentary existing theories of incubation and insight). The explicit-implicit interaction theory relies mainly on 5 basic principles, namely, (a) the coexistence of and the difference between explicit and implicit knowledge, (b) the simultaneous involvement of implicit and explicit processes in most tasks, (c) the redundant representation of explicit and implicit knowledge, (d) the integration of the results of explicit and implicit processing, and (e) the iterative (and possibly bidirectional) processing. A computational implementation of the theory is developed based on the CLARION cognitive architecture and applied to the simulation of relevant human data. This work represents an initial step in the development of process-based theories of creativity encompassing incubation, insight, and various other related phenomena.
Three experiments studied the effects of category structure on the development of categorization automaticity. In Experiment 1, participants were each trained for over 10,000 trials in a simple categorization task with one of three category structures. Results showed that after the first few sessions, there were no significant behavioral differences between participants who learned rule-based versus information-integration category structures. Experiment 2 showed that switching the locations of the response keys after automaticity had developed caused a similar highly significant interference, regardless of category structure. In Experiment 3, a simultaneous dual task that engaged executive functions did not interfere with either rule-based or information-integration categorization. These novel results are consistent with a theory assuming separate processing pathways for initial rule-based and information-integration category learning but a common processing pathway after the development of automaticity.
There is evidence that rule-based category learning is supported by a broad neural network that includes the prefrontal cortex, the anterior cingulate cortex, the head of the caudate nucleus, and medial temporal lobe structures. Although thousands of studies have examined rule-based category learning, only a few have studied the development of automaticity in rule-based tasks. Categorizing by a newly learned rule makes heavy demands on declarative memory, but after thousands of repetitions rule-based categorizations are made with no apparent effort. Thus, it seems likely that the neural systems that mediate automatic rule-based categorization are substantially different from the systems that mediate initial learning. This research aims at identifying the neural systems responsible for early and late rule-based categorization performances. Toward this end, this article reports the results of an experiment in which human participants each practiced a rule-based categorization task for Ͼ10,000 trials distributed over 20 separate sessions. Sessions 1, 4, 10, and 20 were performed inside a magnetic resonance imaging scanner. The main findings are as follows: (1) cortical activation remained approximately constant throughout training, (2) subcortical activation increased with practice (i.e., there were more activated voxels in the striatum), and (3) only cortical activation was correlated with accuracy after extensive training. The results suggest an initial subcortical neural system centered around the head of the caudate that is gradually replaced by a cortical system centered around the ventrolateral prefrontal cortex. With extensive practice, the cortical system progressively becomes more caudal and dorsal, and is eventually centered around the premotor cortex.
Many computational models of the basal ganglia (BG) have been proposed over the past twenty-five years. While computational neuroscience models have focused on closely matching the neurobiology of the BG, computational cognitive neuroscience (CCN) models have focused on how the BG can be used to implement cognitive and motor functions. This review article focuses on CCN models of the BG and how they use the neuroanatomy of the BG to account for cognitive and motor functions such as categorization, instrumental conditioning, probabilistic learning, working memory, sequence learning, automaticity, reaching, handwriting, and eye saccades. A total of 19 BG models accounting for one or more of these functions are reviewed and compared. The review concludes with a discussion of the limitations of existing CCN models of the BG and prescriptions for future modeling, including the need for computational models of the BG that can simultaneously account for cognitive and motor functions, and the need for a more complete specification of the role of the BG in behavioral functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.