Localization of the death receptor Fas to specialized membrane microdomains is crucial to Fas-mediated cell death signaling. Here, we report that the post-translational modification of Fas by palmitoylation at the membrane proximal cysteine residue in the cytoplasmic region is the targeting signal for Fas localization to lipid rafts, as demonstrated in both cell-free and living cell systems. Palmitoylation is required for the redistribution of Fas to actin cytoskeleton-linked rafts upon Fas stimulation and for the raft-dependent, ezrin-mediated cytoskeleton association, which is necessary for the efficient Fas receptor internalization, death-inducing signaling complex assembly and subsequent caspase cascade leading to cell death.
Fas ligand (FasL) is a type II transmembrane protein belonging to the tumor necrosis factor family. Its binding to the cognate Fas receptor triggers the apoptosis that plays a pivotal role in the maintenance of immune system homeostasis. The cell deathinducing property of FasL has been associated with its extracellular domain, which can be cleaved off by metalloprotease activity to produce soluble FasL. The fate of the remaining membrane-anchored N-terminal part of the FasL molecule has not been determined. Here we show that post-translational processing of overexpressed and endogenous FasL in T-cells by the disintegrin and metalloprotease ADAM10 generates a 17-kDa N-terminal fragment, which lacks the receptor-binding extracellular domain. This FasL remnant is membrane anchored and further processed by SPPL2a, a member of the signal peptide peptidaselike family of intramembrane-cleaving proteases. SPPL2a cleavage liberates a smaller and highly unstable fragment mainly containing the intracellular FasL domain (FasL ICD). We show that this fragment translocates to the nucleus and is capable of inhibiting gene transcription. With ADAM10 and SPPL2a we have identified two proteases implicated in FasL processing and release of the FasL ICD, which has been shown to be important for retrograde FasL signaling.
Selective compartmentalization and internalization have been shown as a means for regulating specific signals of cell surface receptors to correspond to cellular requirements and conditions. Here, we present a conserved extracellular glycosphingolipidbinding motif of Fas as one of the regulatory elements in the selection of its internalization route and consequently the signals transmitted upon ligand binding. This motif is required for clathrin-mediated internalization of Fas, which allows the transduction of its cell death signal. The loss of function of the motif drives the activated receptor to an alternative internalization route that is independent of clathrin and cholesterol-dependent rafts but dependent on ezrin, and thereby extinguishing its cell death signal while promoting its non-death functions. Through biochemical, biophysical, and genetic approaches, we present a protein/ lipid-based mechanism as a key to the versatility of the signal transduction by the multifunctional Fas receptor-ligand system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.