When engagement with a randomized trial is driven by factors that affect the outcome or when trial engagement directly affects the outcome independent of treatment, the average treatment effect among trial participants is unlikely to generalize to a target population. In this paper, we use counterfactual and graphical causal models to examine under what conditions we can generalize causal inferences from a randomized trial to the target population of trial-eligible individuals. We offer an interpretation of generalizability analyses using the notion of a hypothetical intervention to "scale-up" trial engagement to the target population. We consider the interpretation of generalizability analyses when trial engagement does or does not directly affect the outcome, highlight connections with censoring in longitudinal studies, and discuss identification of the distribution of counterfactual outcomes via g-formula computation and inverse probability weighting. Last, we show how the methods can be extended to address time-varying treatments, non-adherence, and censoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.