Cephalometric analysis is an essential clinical and research tool in orthodontics for the orthodontic analysis and treatment planning. This paper presents the evaluation of the methods submitted to the Automatic Cephalometric X-Ray Landmark Detection Challenge, held at the IEEE International Symposium on Biomedical Imaging 2014 with an on-site competition. The challenge was set to explore and compare automatic landmark detection methods in application to cephalometric X-ray images. Methods were evaluated on a common database including cephalograms of 300 patients aged six to 60 years, collected from the Dental Department, Tri-Service General Hospital, Taiwan, and manually marked anatomical landmarks as the ground truth data, generated by two experienced medical doctors. Quantitative evaluation was performed to compare the results of a representative selection of current methods submitted to the challenge. Experimental results show that three methods are able to achieve detection rates greater than 80% using the 4 mm precision range, but only one method achieves a detection rate greater than 70% using the 2 mm precision range, which is the acceptable precision range in clinical practice. The study provides insights into the performance of different landmark detection approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.
This paper considers finite-automata based algorithms for handling linear arithmetic with both real and integer variables. Previous work has shown that this theory can be dealt with by using finite automata on infinite words, but this involves some difficult and delicate to implement algorithms. The contribution of this paper is to show, using topological arguments, that only a restricted class of automata on infinite words are necessary for handling real and integer linear arithmetic. This allows the use of substantially simpler algorithms, which have been successfully implemented.
The textural feature dissimilarity measured on the baseline (18)F-FDG PET/CT appears to be a strong independent predictor of the outcome in patients with NSCLC treated by SBRT. This may help selecting patients who may benefit from closer monitoring and therapeutic optimization.
This paper considers finite-automata based algorithms for handling linear arithmetic with both real and integer variables. Previous work has shown that this theory can be dealt with by using finite automata on infinite words, but this involves some difficult and delicate to implement algorithms. The contribution of this paper is to show, using topological arguments, that only a restricted class of automata on infinite words are necessary for handling real and integer linear arithmetic. This allows the use of substantially simpler algorithms and opens the path to the implementation of a usable system for handling this combined theory.⋆ This work was partially funded by a grant of the "Communauté française de Belgique -Direction de la recherche scientifique -Actions de recherche concertées".
RAS-mutated rectal cancers have a significantly higher glucose metabolism. However, the accuracy of (18)F-FDG PET/CT quantitative metrics is not as such as the technique could play a clinical role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.