In Drosophila, light affects circadian behavioral rhythms via at least two distinct mechanisms. One of them relies on the visual phototransduction cascade. The other involves a presumptive photopigment, cryptochrome (cry), expressed in lateral brain neurons that control behavioral rhythms. We show here that cry is expressed in most, if not all, larval and adult neuronal groups expressing the PERIOD (PER) protein, with the notable exception of larval dorsal neurons (DN2s) in which PER cycles in antiphase to all other known cells. Forcing cry expression in the larval DN2s gave them a normal phase of PER cycling, indicating that their unique antiphase rhythm is related to their lack of cry expression. We were able to directly monitor CRY protein in Drosophila brains in situ. It appeared highly unstable in the light, whereas in the dark, it accumulated in both the nucleus and the cytoplasm, including some neuritic projections. We also show that dorsal PER-expressing brain neurons, the adult DN1s, are the only brain neurons to coexpress the CRY protein and the photoreceptor differentiation factor GLASS. Studies of various visual system mutants and their combination with the cry b mutation indicated that the adult DN1s contribute significantly to the light sensitivity of the clock controlling activity rhythms, and that this contribution depends on CRY. Moreover, all CRY-independent light inputs into this central behavioral clock were found to require the visual system. Finally, we show that the photoreceptive DN1 neurons do not behave as autonomous oscillators, because their PER oscillations in constant darkness rapidly damp out in the absence of pigment-dispersing-factor signaling from the ventral lateral neurons.
BackgroundNocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST) project to characterize the antennal transcriptome of the noctuid pest model, Spodoptera littoralis, and to identify candidate genes involved in odour/pheromone detection.ResultsBy targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the Bombyx mori proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation.ConclusionsOur project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in S. littoralis, and for ultimately identifying original targets to fight against moth herbivorous pests.
Circadian clocks synchronize to the solar day by sensing the diurnal changes in light and temperature. In adult Drosophila, the brain clock that controls rest-activity rhythms relies on neurons showing Period oscillations. Nine of these neurons are present in each larval brain hemisphere. They can receive light inputs through Cryptochrome (CRY) and the visual system, but temperature input pathways are unknown. Here, we investigate how the larval clock network responds to light and temperature. We focused on the CRY-negative dorsal neurons (DN2s), in which light-dark (LD) cycles set molecular oscillations almost in antiphase to all other clock neurons. We first showed that the phasing of the DN2s in LD depends on the pigment-dispersing factor (PDF) neuropeptide in four lateral neurons (LNs), and on the PDF receptor in the DN2s. In the absence of PDF signaling, these cells appear blind, but still synchronize to temperature cycles. Period oscillations in the DN2s were stronger in thermocycles than in LD, but with a very similar phase. Conversely, the oscillations of LNs were weaker in thermocycles than in LD, and were phase-shifted in synchrony with the DN2s, whereas the phase of the three other clock neurons was advanced by a few hours. In the absence of any other functional clock neurons, the PDF-positive LNs were entrained by LD cycles but not by temperature cycles. Our results show that the larval clock neurons respond very differently to light and temperature, and strongly suggest that the CRY-negative DN2s play a prominent role in the temperature entrainment of the network.
The Hedgehog (HH) signaling pathway is crucial for the development of many organisms and its inappropriate activation is involved in numerous cancers. HH signal controls the traffic and activity of the seven-pass transmembrane protein Smoothened (SMO), leading to the transcriptional regulation of HH-responsive genes. In Drosophila, the intracellular transduction events following SMO activation depend on cytoplasmic multimeric complexes that include the Fused (FU) protein kinase. Here we show that the regulatory domain of FU physically interacts with the last 52 amino acids of SMO and that the two proteins colocalize in vivo to vesicles. The deletion of this region of SMO leads to a constitutive activation of SMO, promoting the ectopic transcription of HH target genes. This activation is partially dependent of FU activity. Thus, we identify a novel link between SMO and the cytoplasmic complex(es) and reveal a negative role of the SMO C-terminal region that interacts with FU. We propose that FU could act as a switch, activator in presence of HH signal or inhibitor in absence of HH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.