Vicarious calibration approaches using in situ measurements saw first use in the early 1980s and have since improved to keep pace with the evolution of the radiometric requirements of the sensors that are being calibrated. The advantage of in situ measurements for vicarious calibration is that they can be carried out with traceable and quantifiable accuracy, making them ideal for interconsistency studies of on-orbit sensors. The recent development of automated sites to collect the in situ data has led to an increase in the available number of datasets for sensor calibration. The current work describes the Radiometric Calibration Network (RadCalNet) that is an effort to provide automated surface and atmosphere in situ data as part of a network including multiple sites for the purpose of optical imager radiometric calibration in the visible to shortwave infrared spectral range. The key goals of RadCalNet are to standardize protocols for collecting data, process to top-of-atmosphere reflectance, and provide uncertainty budgets for automated sites traceable to the international system of units. RadCalNet is the result of efforts by the RadCalNet Working Group under the umbrella of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) and the Infrared Visible Optical Sensors (IVOS). Four radiometric calibration instrumented sites located in the USA, France, China, and Namibia are presented here that were used as initial sites for prototyping and demonstrating RadCalNet. All four sites rely on collection of data for assessing the surface reflectance as well as atmospheric data over that site. The data are converted to top-of-atmosphere reflectance within RadCalNet and provided through a web portal to allow users to either radiometrically calibrate or verify the calibration of their sensors of interest. Top-of-atmosphere reflectance data with associated uncertainties are available at 10 nm intervals over the 400 nm to 1000 nm spectral range at 30 min intervals for a nadir-viewing geometry. An example is shown demonstrating how top-of-atmosphere data from RadCalNet can be used to determine the interconsistency between two sensors.
Land surface temperature (LST) is an important variable involved in the Earth's surface energy and water budgets and a key component in many aspects of environmental research. The Landsat program, jointly carried out by NASA and the USGS, has been recording thermal infrared data for the past 40 years. Nevertheless, LST data products for Landsat remain unavailable. The atmospheric correction (AC) method commonly used for mono-window Landsat thermal data requires detailed information concerning the vertical structure (temperature, pressure) and the composition (water vapor, ozone) of the atmosphere. For a given coordinate, this information is generally obtained through either radio-sounding or atmospheric model simulations and is passed to the radiative transfer model (RTM) to estimate the local atmospheric correction parameters. Although this approach yields accurate LST data, results are relevant only near this given coordinate. To meet the scientific community's demand for high-resolution LST maps, we developed a new software tool dedicated to processing Landsat thermal data. The proposed tool improves on the commonly-used AC algorithm by incorporating spatial variations occurring in the Earth's atmosphere composition. The ERA-Interim dataset (ECMWFmeteorological organization) was used to retrieve vertical atmospheric conditions, which are available at a global scale with a resolution of 0.125 degrees and a temporal resolution of 6 h. A temporal and spatial linear interpolation of meteorological variables was performed to match the acquisition dates and coordinates of the Landsat images. The atmospheric correction parameters were then estimated on the basis of this reconstructed atmospheric grid using the commercial RTMsoftware MODTRAN. The needed surface emissivity was derived from the common vegetation index NDVI, obtained from the red and near-infrared (NIR) bands of the same Landsat image. This permitted an estimation of LST for the entire image without degradation in resolution. The software tool, named LANDARTs, which stands for Landsat automatic retrieval of surface temperatures, is fully automatic and coded in the programming language Python. In the present paper, LANDARTs was used for the local and spatial validation of surface temperature obtained from a Landsat dataset covering two climatically contrasting zones: southwestern France and central Tunisia. Long-term datasets of in situ surface temperature measurements for both locations were compared to corresponding Landsat LST data. This temporal comparison yielded RMSE values ranging from 1.84 • C-2.55 • C. Landsat surface temperature data obtained with LANDARTs were then spatially compared using the ASTER data products of kinetic surface temperatures (AST08) for both geographical zones. This comparison yielded a satisfactory RMSE of about 2.55 • C. Finally, a sensitivity analysis for the effect of spatial validation on the LST correction process showed a variability of up to 2 • C for an entire Landsat image, confirming that the proposed s...
As part of the Copernicus program, Sentinel-2 is the optical imaging mission designed for the operational monitoring of land and coastal areas. It offers a unique combination of global coverage with a wide field of view, a high revisit capability (5 days with two satellites), a high resolution and multi-spectral imagery.CNES, the French Space Agency, was involved in the commissioning of both Sentinel-2 satellites and is currently working in collaboration with ESA on their long-term monitoring. This paper reviews all the techniques used to ensure an absolute calibration of the 13 spectral bands to better than 5% (the target is 3%) at TOA level. After a brief description of the mission and its related radiometric calibration scheme, we show how standard vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) are used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over the La Crau plain in France and Gobabeb in Namibia, is described. The paper concludes with a summary that includes spectral coherence, agreement between the results obtained with various calibration methods and temporal evolution. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.