Simulating the mechanical response of PDC drill bits contains a lot of uncertainties. Rock and fluid properties are generally poorly known, complex interactions occur downhole and physical models can hardly capture the full complexity of downhole phenomena. This paper presents a statistical approach that improves the reliability of the PDC bit design optimization process by ensuring that the expected directional behavior of the drill bit is robust over a well-defined range of drilling parameters. It is first examined how uncertainty propagates through an accurate bit/rock interaction model which simulates numerically the interaction between a given PDC drill bit geometry and a given rock formation, both represented as 3D meshed surfaces. Series of simulations have been launched with simulation parameters defined as probability density functions. The focus has been set on directional drilling simulations where the drill bit is subjected to significant variations in contact loads on gage pads along its trajectory. A global sensitivity analysis has also been performed to identify the key parameters which control drilling performance. Directional system parameters are critical in terms of steerability and tool face control, particularly in high dogleg severity applications. Based on these simulations, a statistical optimization strategy has then been implemented to ensure that the directional performance of the drill bit remains effective under a given uncertain drilling environment. Statistical analysis combined with drilling simulations indicated that ROP improvements could even be achieved without compromising steerability. A balanced bit design was selected and manufactured in an 8 1/2-in. model to drill a 714 ft section of a Kuwait field. The bit was run on a high dogleg rotary steerable system and directional assembly. The bit achieved the high steerability goals required by the application while showing a good compatibility with the directional tool. Moreover, ROP was increased by approximately 27% compared to offset wells, setting a record rate of penetration in the field. Whereas statistical analyses are commonly conducted in the field of geosciences, it has rarely been applied in the field of drilling applications. The statistical bit design optimization strategy deployed in this work has allowed to improve both the drilling performance of the drill bit and its reliability.
Drilling into harsh environment with heterogeneous formations including chert or conglomerate is usually a boundary that can't be crossed with standard PDC bit technology. This paper will show how an innovative PDC cutter shape combined with a novel 3D approach of cutting structure design have withstood this challenge and successfully replaced 16-in. traditional roller cone application in United Arab Emirates by the latest PDC technology delivering an average 35% improvement on Rate Of Penetration (ROP) while continuously drilling to Total Depth (TD) on each section. When drilling chert or conglomerate type of formation with a PDC drill bit, uneven load per cutters is detrimental to their integrity and results in short runs or brutal stop in the drilling operation triggering a trip for drill bit change. The new technology shown in this paper includes a unique hybrid combination of cutter shapes with a design arrangement of the cutting structure to allow for the pre-fracturing of any hard formation heterogeneity by 3D shaped cutters while standard cutters ensure a high level of cutting efficiency through their shearing action. This innovative concept has been intensively tested in the lab through single cutter and full bit scale drilling testing. In addition, in-house 3D bit simulation software has been used to optimize the cutting structure and assure performance within a wide range of drilling scenarios. Based on these simulations, an optimized design was manufactured for 16-in. directional applications usually tackled by roller cone drill bits and known for having heterogeneous cherty formations to drill throughout the end of the 5,000 ft section. Simulation results helped to validate the unique shaped cutters placement on the cutting structure to maximize the pre-fracturing effect. This design was run on Rotary Steerable System (RSS) and Positive Displacement Motor (PDM) assemblies and successfully drilled 5 wells in a challenging field of the United Arab Emirates offshore operations. 100% successful rate to reach TD in one run was achieved while increasing drastically the average ROP of the section by at least 35%. Moreover, the unique design configuration allowed to better control the directional behavior of the drill string, which resulted in a significant reduction in the overall cost per foot. A new boundary has been breached in several wells of a complex 16-in. chert and conglomerate application in the United Arab Emirates thanks to a years-long effort combining an innovative cutter technology, an optimized bit design process including a state-of-the-art 3D simulation software with lab and field experimental testing campaigns. By looking at the micro level structure of the rock destruction mechanism, a huge improvement has been obtained at the macro level of drilling operation economics.
PDC bit designs for directional drilling typically sacrifice penetration rate for steering performance, resulting in a higher cost per foot. This paper discusses a process for modeling the drilling behavior of PDC bits, insights gained regarding bit efficiency when steering with various motorized and non-motorized rotary steerable systems (RSS), and field experience with the resulting bit design. Prediction and analyses of PDC bit behavior used a bridgeable software platform to integrate various design applications. This allowed the combined analyses of performance objectives and criteria, including cutting structure, rock type, application, well profiles, drives, and 3D contact. Simulations were then run to examine the performance of different cutting structures relative to various drilling parameters, and matched to a specific drive system. An optimized PDC bit design was developed and manufactured, and its field performance was compared to the model and to PDC bit performance in offset wellbores. The optimized design was manufactured in a 6 1/8-in PDC bit and run on motorized and non-motorized RSS. It resulted in significant ROP increases and a lower cost per foot compared to offset wells, while retaining a high level of steering response. In one well, the ROP was increased to 48.43 ft/hr versus a target of 35 ft/hr based on offset performance. The resulting cost per foot was reduced from $11.40 KD to $8.59 KD. The paper examines bit performance and dull condition for the runs and compares them with offset runs. Field performance results validate the bit design modeling and simulation process, and emphasize the importance of integrating various performance analyses to improve bit efficiency without degrading critical steering characteristics. Extensive development of cutting structures that "drilled on paper" combined with full scale bit laboratory testing has resulted in the development of a design process that combines multiple design objectives and criteria to model and simulate bit behavior during drilling. As shown by field results, this process of balancing the design provides the means to optimize overall performance and lower costs for many different bit applications.
Downhole vibration measurements are used real-time and post-run to monitor drilling dynamics. Real-time monitoring tools are applied to facilitate immediate corrective actions but their deployment adds operational constraints and costs. This paper describes a new high-capability vibration recorder embedded in the drill bit as a standard component. The analysis of two case studies in the Middle East shows how memory devices available at a reduced cost and on every run are a valuable option for many appraisal or development wells. Developing a fleet of reliable downhole recording tools typically takes years and involves teams of experts in various fields. The paper describes the strategy followed by a drill bit manufacturer to develop and deploy a compact, high capability and cost-effective vibration recorder to provide continuous readings of accelerations, rotation speed (RPM) and temperature at 100Hz and over 250 hours. Sensors and batteries have been packaged to fit into the drill bit shank or elsewhere in the bottom hole assembly (BHA). The recording starts automatically and thus removes the need for onsite personnel. The paper also presents proprietary data analytics software used to retrieve, process and synchronize the recorded data with other available data (mud logs, Measurement/Logging While Drilling logs) and to present critical drilling events. In the first application, the 8 ½-in. bit drilled a 20,000 ft horizontal drain. More than 250 hr of data were recorded showing intense levels of stick-slip. During the entire run, the drilling team deployed several strategies to mitigate stick-slip, including the use of two surface-based stick-slip mitigation systems. The analysis shows that these systems are sometimes unsuccessful in mitigating stick-slip and are difficult to calibrate. It is demonstrated how the vibration recorder may contribute to fine tuning these mitigation efforts through optimization of their settings. In the second application, the vibration recorder was mounted on a 12 1/4-in. bit used to drill 5,000 ft through cement and formation. The analysis shows the motor was subjected to erratic RPM cycles, leading to frequent stalls and acceleration peaks during the run. It is shown how motor performance then decreased consistently during the last hundreds of feet of the section and how this affected rate of penetration (ROP). Deployment of a vibration recorder over the entire drill bit manufacturer's fleet allows continuous monitoring of critical drilling issues and malfunctions related to a variety of drilling equipment that enables the operator to improve drilling performance. The bit-sensor package makes high frequency data systematically available at a reduced cost for every drilling application.
Torsional vibrations are a very common phenomenon affecting drilling operations by limiting efficiency, increasing the risk of downhole equipment failure and generating additional costs, particularly when their most severe form is encountered, the stick-slip. It is less known that torsional vibrations also strongly affect directional drilling operations reducing directional stability and tool face control. In this paper, the highly variable solicitation induced by torsional vibrations is addressed with a statistical approach. This approach, used successfully in Kuwait applications, resulted in an operational savings of 30% of the cost per foot over a panel of more than 15 runs analyzed. Steerability and directional stability is critical on directional wells, especially when using push-the-bit systems with PDC bit due to side force distributed unevenly over one bit revolution. Most of today bit design comparisons are made with an average steerability factor computed over one full revolution of the bit. The method described in this paper is going further in details and looks at the evolution of directional performance indicators within one bit revolution. With the help of a state-of-the-art 3D bit-rock interaction model, which simulates the drilling environment considering the drive system mechanism and both the drill bit and the hole being drilled as a set of 3D meshed surfaces, an accurate picture of the directional stability of the bit design is available. This approach is complemented by a statistical analysis which allows to simulate a multitude of input parameters combinations and to map the directional response of a bit design in a more robust way. Based on the results of the statistical analysis, an optimized design was selected and manufactured for a 12 ¼’-in. rotary steerable system (RSS) directional application known for having torsional vibration limitations. As revealed by the simulation results, this design was expected to exhibit a better directional stability than previous bit design iterations. This optimized design was run on RSS and positive displacement motor (PDM) assemblies and successfully drilled several wells in different fields of Kuwait operations ground. It experienced smooth and stable directional control while reducing the risk for torsional vibrations and resulted in tremendous reduction of the overall cost per foot. PDC bit selection and design process have considerably evolved in the last decade with the use of increasingly accurate simulations models. This paper presents the next step of evolution dedicated to delivering the best adapted solution to any given scenario by examining in greater detail the directional response of a drill bit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.