We investigate the transient and stationary buoyant motion of the Rayleigh-Bénard instability when the fluid layer is subjected to a vertical, steady magnetic field. For Rayleigh number, Ra, in the range 10-10, and Hartmann number, Ha, between 0 and 100, we performed three-dimensional direct numerical simulations. To predict the growth rate and the wavelength of the initial regime observed with the numerical simulations, we developed the linear stability analysis beyond marginal stability for this problem. We analyzed the pattern of the flow from linear to nonlinear regime. We observe the evolution of steady state patterns depending on [Formula: see text] and Ha. In addition, in the nonlinear regime, the averaged kinetic energy is found to depend on Ra and to be independent of Ha in the studied range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.