High-throughput virtual screening (HTVS) is, in conjunction with rapid advances in computer hardware, becoming a staple in drug design research campaigns and cheminformatics. In this context, virtual compound library design becomes crucial as it generally constitutes the first step where quality filtered databases are essential for the efficient downstream research. Therefore, multiple filters for compound library design were devised and reported in the scientific literature. We collected the most common filters in medicinal chemistry (PAINS, REOS, Aggregators, van de Waterbeemd, Oprea, Fichert, Ghose, Mozzicconacci, Muegge, Egan, Murcko, Veber, Ro3, Ro4, and Ro5) to facilitate their open access use and compared them. Then, we implemented these filters in the open platform Konstanz Information Miner (KNIME) as a freely accessible and simple workflow compatible with small or large compound databases for the benefit of the readers and for the help in the early drug design steps.
Since December 2019, the new SARS-CoV-2-related COVID-19 disease has caused a global pandemic and shut down the public life worldwide. Several proteins have emerged as potential therapeutic targets for drug development, and we sought out to review the commercially available and marketed SARS-CoV-2-targeted libraries ready for high-throughput virtual screening (HTVS). We evaluated the SARS-CoV-2-targeted, protease-inhibitor-focused and protein–protein-interaction-inhibitor-focused libraries to gain a better understanding of how these libraries were designed. The most common were ligand- and structure-based approaches, along with various filtering steps, using molecular descriptors. Often, these methods were combined to obtain the final library. We recognized the abundance of targeted libraries offered and complimented by the inclusion of analytical data; however, serious concerns had to be raised. Namely, vendors lack the information on the library design and the references to the primary literature. Few references to active compounds were also provided when using the ligand-based design and usually only protein classes or a general panel of targets were listed, along with a general reference to the methods, such as molecular docking for the structure-based design. No receptor data, docking protocols or even references to the applied molecular docking software (or other HTVS software), and no pharmacophore or filter design details were given. No detailed functional group or chemical space analyses were reported, and no specific orientation of the libraries toward the design of covalent or noncovalent inhibitors could be observed. All libraries contained pan-assay interference compounds (PAINS), rapid elimination of swill compounds (REOS) and aggregators, as well as focused on the drug-like model, with the majority of compounds possessing their molecular mass around 500 g/mol. These facts do not bode well for the use of the reviewed libraries in drug design and lend themselves to commercial drug companies to focus on and improve.
Efficient chemical library design for high-throughput virtual screening and drug design requires a pre-screening filter pipeline capable of labeling aggregators, pan-assay interference compounds (PAINS), and rapid elimination of swill (REOS); identifying or excluding covalent binders; flagging moieties with specific bio-evaluation data; and incorporating physicochemical and pharmacokinetic properties early in the design without compromising the diversity of chemical moieties present in the library. This adaptation of the chemical space results in greater enrichment of hit lists, identified compounds with greater potential for further optimization, and efficient use of computational time. A number of medicinal chemistry filters have been implemented in the Konstanz Information Miner (KNIME) software and analyzed their impact on testing representative libraries with chemoinformatic analysis. It was found that the analyzed filters can effectively tailor chemical libraries to a lead-like chemical space, identify protein–protein inhibitor-like compounds, prioritize oral bioavailability, identify drug-like compounds, and effectively label unwanted scaffolds or functional groups. However, one should be cautious in their application and carefully study the chemical space suitable for the target and general medicinal chemistry campaign, and review passed and labeled compounds before taking further in silico steps.
COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. Although a number of new vaccines are available to combat this threat, a high prevalence of novel mutant viral variants is observed in all world regions affected by this infection. Among viral proteomes, the highly glycosylated spike protein (Sprot) of SARS-CoV-2 has received the most attention due to its interaction with the host receptor ACE2. To understand the mechanisms of viral variant infectivity and the interaction of the RBD of Sprot with the host ACE2, we performed a large-scale mutagenesis study of the RBD-ACE2 interface by performing 1780 point mutations in silico and identifying the ambiguous stabilisation of the interface by the most common point mutations described in the literature. Furthermore, we pinpointed the N501Y mutation at the RBD of Sprot as profoundly affecting complex formation and confirmed greater stability of the N501Y mutant compared to wild-type (WT) viral S protein by molecular dynamics experiments. These findings could be important for the study and design of upcoming vaccines, PPI inhibitor molecules, and therapeutic antibodies or antibody mimics.Keywords: COVID-19 • SARS-CoV-2 • point mutation • SARS-CoV-2 variants • protein-protein interactions • drug design.
In a survey of novel interactions between an IgG1 antibody and different Fcγ receptors (FcγR), molecular dynamics simulations were performed of interactions of monoclonal antibody involved complexes with FcγRs. Free energy simulations were also performed of isolated wild-type and substituted Fc regions bound to FcγRs with the aim of assessing their relative binding affinities. Two different free energy calculation methods, Molecular Mechanical/Generalized Born Molecular Volume (MM/GBMV) and Bennett Acceptance Ratio (BAR), were used to evaluate the known effector substitution G236A that is known to selectively increase antibody dependent cellular phagocytosis. The obtained results for the MM/GBMV binding affinity between different FcγRs are in good agreement with previous experiments, and those obtained using the BAR method for the complete antibody and the Fc-FcγR simulations show increased affinity across all FcγRs when binding to the substituted antibody. The FcγRIIa, a key determinant of antibody agonistic efficacy, shows a 10-fold increase in binding affinity, which is also consistent with the published experimental results. Novel interactions between the Fab region of the antibody and the FcγRs were discovered with this in silico approach, and provide insights into the antibody-FcγR binding mechanism and show promise for future improvements of therapeutic antibodies for preclinical studies of biological drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.