Understanding the segregation of cells is crucial to answer questions about tissue formation in embryos or tumor progression. Steinberg proposed that separation of cells can be compared to the separation of two liquids. Such a separation is well described by the Cahn-Hilliard (CH) equations and the segregation indices exhibit an algebraic decay with exponent 1/3 with respect to time. Similar exponents are also observed in cell-based models. However, the scaling behavior in these numerical models is usually only examined in the asymptotic regime and these models have not been directly applied to actual cell segregation data. In contrast, experimental data also reveals other scaling exponents and even slow logarithmic scaling laws. These discrepancies are commonly attributed to the effects of collective motion or velocity-dependent interactions. By calibrating a 2D cellular automaton (CA) model which efficiently implements a dynamic variant of the differential adhesion hypothesis to 2D experimental data from Méhes et al., we reproduce the biological cell segregation experiments with just adhesive forces. The segregation in the cellular automaton model follows a logarithmic scaling initially, which is in contrast to the proposed algebraic scaling with exponent 1/3. However, within the less than two orders of magnitudes in time which are observable in the experiments, a logarithmic scaling may appear as a pseudo-algebraic scaling. In particular, we demonstrate that the cellular automaton model can exhibit a range of exponents ≤1/3 for such a pseudo-algebraic scaling. Moreover, the time span of the experiment falls into the transitory regime of the cellular automaton rather than the asymptotic one. We additionally develop a method for the calibration of the 2D Cahn-Hilliard model and find a match with experimental data within the transitory regime of the Cahn-Hilliard model with exponent 1/4. On the one hand this demonstrates that the transitory behavior is relevant for the experiment rather than the asymptotic one. On the other hand this corroborates the ambiguity of the scaling behavior, when segregation processes can be only observed on short time spans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.