In this paper, we introduce two new general theorems on ϕ − A, p n k summability factors of infinite and Fourier series. By using these theorems, we obtain some new results regarding other important summability methods and investigate conversions between them.
Communicated by: T. Qian MOS Classification: 26D15; 42A24; 40F05; 40G99Bor has recently obtained a main theorem dealing with absolute weighted mean summability of Fourier series. In this paper, we generalized that theorem for |A, n | k summability method. Also, some new and known results are obtained dealing with some basic summability methods.
The notion of a lacunary statistical δ 2 -quasi-Cauchyness of sequence of real numbers is introduce and investigated. In this work, we present interesting theorems related to lacunary statistically δ 2 -ward continuity. A function f, whose domain is included in R, and whose range included in R is called lacunary statistical δ 2 ward continuous if it preserves lacunary statistical δ 2 quasi-Cauchy sequences, i.e. (f(xk)) is a lacunary statistically δ 2 quasi-Cauchy sequence whenever (xk) is a lacunary statistically δ 2 quasi-Cauchy sequence, where a sequence (xk) is called lacunary statistically δ 2 quasi-Cauchy if (∆ 2 xk) is a lacunary statistically quasi-Cauchy sequence. We find out that the set of lacunary statistical δ 2 ward continuous functions is closed as a subset of the set of continuous functions.
İstatistiksel boşluklu delta 2 quasi Cauchy dizileri ÖZBu makalede istatistiksel boşluklu δ 2 -quasi-Cauchy dizisi kavramı tanımlanmış ve araştırılmıştır. Bu araştırmada istatistiksel boşluklu δ 2 -süreklilik ile ilgili ilgi çekici teoremler ispatlanmıştır. (∆ 2 xk) istatistiksel boşluklu quasi Cauchy dizisi olduğunda (xk) dizisine istatistiksel boşluklu δ 2 -quasi-Cauchy dizisi dendiğine göre, reel sayılar kümesinin bir alt kümesi üzerinde tanımlı reel değerli bir f fonksiyonuna eğer terimleri A da olan istsatistiksel boşluklu δ 2 -quasi-Cauchy dizilerini koruyor ise, yani (xk) dizisi terimleri A da olan istatistiksel boşluklu δ 2 -quasi-Cauchy dizisi olduğunda (f(xk)) dizisi de istatistiksel boşluklu δ 2 -quasi-Cauchy dizisi oluyor ise istatistiksel boşluklu δ 2 -ward süreklidir denir. İstatistiksel boşluklu δ 2 -ward sürekli fonksiyonların kümesinin sürekli fonksiyonlar uzayının kapalı bir alt kümesi olduğu ortaya çıkarılmıştır.Anahtar Kelimeler: toplanabilme, quasi Cauchy dizisi, istatistiksel boşluklu yakınsaklık, süreklilik 1 Ahi Evran Üniversitesi Fen Edebiyat Fakültesi / Matematik sebnemyildiz@ahievran.edu.tr
In this paper, we introduce a concept of lacunary statistically p-quasi-Cauchyness of a real sequence in the sense that a sequence (α k ) is lacunary statistically p-quasi-Cauchy if limr→∞ 1 hr |{k ∈ Ir : |α k+p − α k | ≥ ε}| = 0 for each ε > 0. A function f is called lacunary statistically p-ward continuous on a subset A of the set of real numbers R if it preserves lacunary statistically p-quasi-Cauchy sequences, i.e. the sequence (f (αn)) is lacunary statistically p-quasi-Cauchy whenever α = (αn) is a lacunary statistically pquasi-Cauchy sequence of points in A. It turns out that a real valued function f is uniformly continuous on a bounded subset A of R if there exists a positive integer p such that f preserves lacunary statistically p-quasi-Cauchy sequences of points in A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.