<p>Water mass transformation in the Southern Ocean is vital for closing the large-scale overturning circulation, altering the thermohaline characteristics of upwelled Circumpolar Deep Water before returning to the ocean interior. Using profiling gliders, this study investigates how buoyancy forcing and wind-driven processes lead to intraseasonal (1-10 days) variability of the mixed layer temperature and salinity in three distinct locations associated with different Southern Ocean regions important for water mass transformation - the Subantarctic Zone (SAZ, 43&#176;S), Polar Frontal Zone (PFZ, 54&#176;S) and Marginal Ice Zone (MIZ, 60&#176;S). Surface heat fluxes drive the summertime mixed layer buoyancy gain in all regions, particularly evident in the SAZ and MIZ, where shallow mixed layers and strong stratification further enhance mixed layer warming. In the SAZ and MIZ, the entrainment of denser water from below is the primary mechanism for reducing buoyancy gain. In the PFZ, turbulent mixing by mid-latitude storms result in consistently deep mixed layers and suppressed mixed layer thermohaline variability. Intraseasonal mixed layer salinity variability in the polar regions (PFZ and MIZ) is dominated by the lateral stirring of meltwater from seasonal sea ice melt. This is evident from early summer in the MIZ, while in the PFZ, meltwater fronts are proposed to be dominant during late summer, indicating the potential for seasonal sea ice freshwater to impact a region where the upwelling limb of overturning circulation reaches the surface. This study reveals a regional dependence of mixed layer thermohaline properties to small spatio-temporal processes, which suggests a similar regional dependence to surface water mass transformation in the Southern Ocean.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.