Voltage sags can cause the interruption of power supply and can negatively affect operations of customers. In this paper, the authors study the impact of battery energy storage systems (BESS) on voltage sags. A stochastic method of fault positions is used. Faults of various types are simulated and voltages are recorded. Firstly, with the BESS integrated into the network, there are higher residual voltages, fewer voltage sags and less expected critical voltage loss. Secondly, if the BESS converter power factor is reduced, recorded residual voltages are higher, voltage sags are fewer, and the number of expected critical voltage sags is lower. Finally, when three BESS converter control modes, namely constant voltage, constant power factor, and constant reactive power, were assessed, results showed similar voltage sag performances for constant power factor and constant reactive power modes. Furthermore, operating in constant voltage control outperformed the other two modes as it resulted in higher residual voltages, a lower number of voltage sags, and fewer expected critical voltage sags. The paper has demonstrated that the BESS can improve voltage sag performance. In addition, the power factor of the BESS converter and the mode of operation of the converter can influence the magnitude of the voltage sag performance improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.