Light is an essential environmental factor in the progression of plant growth and development but prolonged exposure to high levels of light stress can cause cellular damage and ultimately result in the death of the plant. Plants can respond defensively to this stress for a limited period and this involves changes to their gene expression profiles. Proteomic approaches were therefore applied to the study of the response to high light stress in the Arabidopsis thaliana plant species. Wild-type Arabidopsis was grown under normal light (100 micromol photons.m(-2).s(-1)) conditions and then subjected to high light (1000 micromol photons.m(-2).s(-1)) stress. Chloroplasts were then isolated from these plants and both soluble and insoluble proteins were extracted and subjected to two-dimensional (2-D) gel electrophoresis. The resolved proteins were subsequently identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and comparative database analysis. 64 protein spots, which were identified as candidate factors that responded to high light stress, were then selected for analysis and 52 of these were successfully identified using MALDI-TOF-MS analysis. 35 of the 52 identified proteins were found to decrease their expression levels during high light stress and a further 14 of the candidate proteins had upregulated expression levels under these conditions. Most of the proteins that were downregulated during high light stress are involved in photosynthesis pathways. However, many of the 14 upregulated proteins were identified as previously well-known high light stress-related proteins, such as heat shock proteins (HSPs), dehydroascorbate reductase (DHAR), and superoxide dismutase (SOD). Three novel proteins that were more highly expressed during periods of high light stress but had no clear functional relationship to these conditions, were also identified in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.