Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review.
Targeted drug delivery using nanoparticles can minimize the side effects of conventional pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based agents into clinical applications still remains a challenge due to the difficulty in regulating interactions on the interfaces between nanoparticles and biological systems. Here, we present a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-transferase. Once thermodynamically stabilized in preferred orientations on the nanoparticles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins to prevent the clearance of nanoparticles by macrophages, while ensuring systematic targeting functions in vitro and in vivo. This study provides insight into the use of the supramolecularly built protein corona shield as a targeting agent through regulating the interfaces between nanoparticles and biological systems.
Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.
Protein cage nanoparticles are excellent candidates for use as multifunctional delivery nanoplatforms because they are built from biomaterials and have a well-defined structure. A novel protein cage nanoparticle, encapsulin, isolated from thermophilic bacteria Thermotoga maritima, is prepared and developed as a versatile template for targeted delivery nanoplatforms through both chemical and genetic engineering. It is pivotal for multifunctional delivery nanoplatforms to have functional plasticity and versatility to acquire targeting ligands, diagnostic probes, and drugs simultaneously. Encapsulin is genetically engineered to have unusual heat stability and to acquire multiple functionalities in a precisely controlled manner. Hepatocellular carcinoma (HCC) cell binding peptide (SP94-peptide, SFSIIHTPILPL) is chosen as a targeting ligand and displayed on the surface of engineered encapsulin (Encap_loophis42C123) through either chemical conjugation or genetic insertion. The effective and selective targeted delivery of SP94-peptide displaying encapsulin (SP94-Encap_loophis42C123) to HepG2 cells is confirmed by fluorescent microscopy imaging. Aldoxorubicin (AlDox), an anticancer prodrug, is chemically loaded to SP94-Encap_loophis42C123 via thiol-maleimide Michael-type addition, and the efficacy of the delivered drugs is evaluated with a cell viability assay. SP94-Encap_loophis42C123-AlDox shows comparable killing efficacy with that of free drugs without the platform's own cytotoxicity. Functional plasticity and versatility of the engineered encapsulin allow us to introduce targeting ligands, diagnostic probes, and therapeutic reagents simultaneously, providing opportunities to develop multifunctional delivery nanoplatforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.