The paper presents a computationally efficient meta-modeling approach to spatially explicit uncertainty and sensitivity analysis in a cellular automata (CA) urban growth and land-use simulation model. The uncertainty and sensitivity of the model parameters are approximated using a meta-modeling method called polynomial chaos expansion (PCE). The parameter uncertainty and sensitivity measures obtained with PCE are compared with traditional Monte Carlo simulation results. The meta-modeling approach was found to reduce the number of model simulations necessary to arrive at stable sensitivity estimates. The quality of the results is comparable to the full-order modeling approach, which is computationally costly. The study shows that the meta-modeling approach can significantly reduce the computational effort of carrying out spatially explicit uncertainty and sensitivity analysis in the application of spatio-temporal models.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.