Austenitic high nitrogen (AHNS) and austenitic high interstitial steels (AHIS) are of interest for mechanical engineering applications because of their unique combination of mechanical (strength, ductility), chemical (corrosion resistance) and physical (non-ferromagnetic) properties. But despite their high strength values e. g. after cold deformation up to 2 GPa in combination with an elongation to fracture of 30 %, which is based on twinning-induced plasticity (TWIP) mechanisms and transformation-induced plasticity (TRIP) mechanisms, the fatigue limit remains relatively small. While for chromium-nickel steels the fatigue limit rises with about 0.5-times the elastic limit it does not at all for austenitic high-nitrogen steels or only to a much smaller extent for nickel-free austenitic high-interstitial steels. The reasons are still not fully understood but this behavior can roughly be related to the tendency for planar or wavy slip. Now the latter is hindered by nitrogen and promoted by nickel. This contribution shows the fatigue behavior of chromium-manganese-carbon-nitrogen (CrMnCn) steels with carbon + nitrogen-contents up to 1.07 wt.%. Beside the governing influence of these interstitials on fatigue this study displays, how the nitrogen/nickel-ratio might be another important parameter for the fatigue behavior of such steels.Keywords: Austenitic high strength steels / Ramberg-Osgood / twinning-induced plasticity (TWIP) / transformation-induced plasticity (TRIP) / nitrogen-nickel ratio / cyclic behavior Schlü sselwö rter: Austenitische hochfeste Stä hle / Ramberg-Osgood / durch Zwillingsbildung induzierte Plastizitä t (TWIP) / umwandlungsbewirkte Plastizitä t (TRIP) / Stickstoff-Nickel Verhä ltnis / zyklische Belastung Corresponding author: S. Gü ler, Institut fü r die Technologien der Metalle, Lehrstuhl Werkstofftechnik, Universitä t Duisburg-Essen,
No abstract
In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.
The austenitic high-nitrogen (AHNS) and high-interstitial steels (AHIS) with more than 0.6 weight-% N allow for a yield strength above 1.1 GPa and a tensile strength above 1.5 GPa by maintaining an elongation to fracture markedly above 30%. These steels gain their prominent mechanical properties from the fact that at the chosen sum of C+N and C/N-ratios, the concentration of free electrons is higher compared to that of other steels. Thus, the capacity to dissipate plastic work under monotonic tensile loading is unique. Now, the fatigue limit of austenitic steels in general is mainly governed by the sum of interstitials and should be further improved by cold working. Unfortunately, this is not the case for the AHNS and AHIS and is in contrast to the classical CrNiC-or CrMnC-steels. Thus, tensile and fatigue tests of cold-worked samples were conducted and analyzed by scanning-and transmission-electron microscopy. This paper tries to elucidate the metallurgical reasons, as well as the material engineering aspects, of such peculiar behavior of AHNS and AHIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.