The automated methods presented here can help diagnose and detect prostate cancer, and improve segmentation results. For that purpose, multispectral MRI provides better information about cancer and normal regions in the prostate when compared to methods that use single MRI techniques; thus, the different MRI measurements provide complementary information in the automated methods. Moreover, the use of supervised algorithms in such automated methods remain a good alternative to the use of unsupervised algorithms.
A fundamental challenge in autonomous vehicles is adjusting the steering angle at different road conditions. Recent state-of-the-art solutions addressing this challenge include deep learning techniques as they provide end-to-end solution to predict steering angles directly from the raw input images with higher accuracy. Most of these works ignore the temporal dependencies between the image frames. In this paper, we tackle the problem of utilizing multiple sets of images shared between two autonomous vehicles to improve the accuracy of controlling the steering angle by considering the temporal dependencies between the image frames. This problem has not been studied in the literature widely. We present and study a new deep architecture to predict the steering angle automatically by using Long-Short-Term-Memory (LSTM) in our deep architecture. Our deep architecture is an end-to-end network that utilizes CNN, LSTM and fully connected (FC) layers and it uses both present and futures images (shared by a vehicle ahead via Vehicle-to-Vehicle (V2V) communication) as input to control the steering angle. Our model demonstrates the lowest error when compared to the other existing approaches in the literature.
For large-scale simulations, the data sets are so massive that it is sometimes not feasible to view the data with basic visualization methods, let alone explore all time steps in detail. Automated tools are necessary for knowledge discovery, i.e., to help sift through the data and isolate specific time steps that can then be further explored. Scientists study patterns and interactions and want to know when and where interesting things happen. Activity detection, the detection of specific interactions of objects which span a limited duration of time, has been an active research area in the computer vision community. In this paper, we introduce activity detection to scientific simulations and show how it can be utilized in scientific visualization. We show how activity detection allows a scientist to model an activity and can then validate their hypothesis on the underlying processes. Three case studies are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.