Acute and chronic effects of nicotine on the immune system are usually opposite; acute treatment stimulates while chronic nicotine suppresses immune and inflammatory responses. Nicotine acutely raises intracellular calcium ([Ca2+]i) in T cells, but the mechanism of this response is unclear. Nicotinic acetylcholine receptors (nAChRs) are present on neuronal and non-neuronal cells, but while in neurons, nAChRs are cation channels that participate in neurotransmission; their structure and function in nonexcitable cells are not well-defined. In this communication, we present evidence that T cells express α7-nAChRs that are critical in increasing [Ca2+]i in response to nicotine. Cloning and sequencing of the receptor from human T cells showed a full-length transcript essentially identical to the neuronal α7-nAChR subunit (>99.6% homology). These receptors are up-regulated and tyrosine phosphorylated by treatment with nicotine, anti-TCR Abs, or Con A. Furthermore, knockdown of the α7-nAChR subunit mRNA by RNA interference reduced the nicotine-induced Ca2+ response, but unlike the neuronal receptor, α-bungarotoxin and methyllycaconitine not only failed to block, but also actually raised [Ca2+]i in T cells. The nicotine-induced release of Ca2+ from intracellular stores in T cells did not require extracellular Ca2+, but, similar to the TCR-mediated Ca2+ response, required activation of protein tyrosine kinases, a functional TCR/CD3 complex, and leukocyte-specific tyrosine kinase. Moreover, CD3ζ and α7-nAChR coimmunoprecipitated with anti-CD3ζ or anti-α7-nAChR Abs. These results suggest that in T cells, α7-nAChR, despite its close sequence homology with neuronal α7-nAChR, fails to form a ligand-gated Ca2+ channel, and that the nicotine-induced rise in [Ca2+]i in T cells requires functional TCR/CD3 and leukocyte-specific tyrosine kinase.
Allergic asthma, an inflammatory disease characterized by the infiltration and activation of various leukocytes, the production of Th2 cytokines and leukotrienes, and atopy, also affects the function of other cell types, causing goblet cell hyperplasia/hypertrophy, increased mucus production/secretion, and airway hyperreactivity. Eosinophilic inflammation is a characteristic feature of human asthma, and recent evidence suggests that eosinophils also play a critical role in T cell trafficking in animal models of asthma. Nicotine is an anti-inflammatory, but the association between smoking and asthma is highly contentious and some report that smoking cessation increases the risk of asthma in ex-smokers. To ascertain the effects of nicotine on allergy/asthma, Brown Norway rats were treated with nicotine and sensitized and challenged with allergens. The results unequivocally show that, even after multiple allergen sensitizations, nicotine dramatically suppresses inflammatory/allergic parameters in the lung including the following: eosinophilic/lymphocytic emigration; mRNA and/or protein expression of the Th2 cytokines/chemokines IL-4, IL-5, IL-13, IL-25, and eotaxin; leukotriene C4; and total as well as allergen-specific IgE. Although nicotine did not significantly affect hexosaminidase release, IgG, or methacholine-induced airway resistance, it significantly decreased mucus content in bronchoalveolar lavage; interestingly, however, despite the strong suppression of IL-4/IL-13, nicotine significantly increased the intraepithelial-stored mucosubstances and Muc5ac mRNA expression. These results suggest that nicotine modulates allergy/asthma primarily by suppressing eosinophil trafficking and suppressing Th2 cytokine/chemokine responses without reducing goblet cell metaplasia or mucous production and may explain the lower risk of allergic diseases in smokers. To our knowledge this is the first direct evidence that nicotine modulates allergic responses.
Epidemiologic studies suggest that in utero exposure to tobacco smoke, primarily through maternal smoking, increases the risk for asthma in children; however, the mechanism of this phenomenon is not clear. Cyclic adenosine monophosphate relaxes airway smooth muscles in the lung and acts as an antiasthmatic. In this study, we examined the effects of in utero cigarette smoke exposure of Balb/c mice on airway responsiveness, as determined by Penh measurements. Animals exposed prenatally but not postnatally to cigarette smoke exhibited increased airway hyperresponsiveness after a single intratracheal injection of Aspergillus fumigatus extract. The increased airway hyperresponsiveness was not associated with increased leukocyte migration or mucous production in the lung but was causally related to decreased lung cyclic adenosine monophosphate levels, increased phosphodiesterase-4 enzymatic activity, and phosphodiesterase-4D (PDE4D) isoform-specific messenger ribonucleic acid expression in the lung. Exposure of adult mice to cigarette smoke did not significantly alter airway responsiveness, cyclic adenosine monophosphate levels, or the phosphodiesterase activity. These results suggest that prenatal exposure to cigarette smoke affects lung airway reactivity by modulating the lung cyclic adenosine monophosphate levels through changes in phosphodiesterase-4D activity, and these effects are independent of significant mucous production or leukocyte recruitment into the lung.
Leukocytes contain both nicotinic and muscarinic receptors, and while activation of nicotinic receptors suppresses immune/inflammatory responses, the role of muscarinic receptors in immunity is unclear. We examined the effects of a muscarinic receptor antagonist (atropine) and agonist (oxotremorine), administered chronically through miniosmotic pumps, on immune/inflammatory responses in the rat. Results show that while oxotremorine stimulated, atropine inhibited the antibody and T-cell proliferative responses. Moreover, atropine also suppressed the turpentine-induced leukocytic infiltration and tissue injury, and inhibited chemotaxis of leukocytes toward neutrophil and monocyte/lymphocyte chemoattractants. Thus, activation of nicotinic and muscarinic receptors has opposite effects on the immune/inflammatory responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.