Background Trypanosomatids such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi belong to the order Kinetoplastida and are the source of many significant human and animal diseases. Current treatment is unsatisfactory and is compromised by the rising appearance of drug resistant parasites. Novel and more effective chemotherapeutics are urgently needed to treat and prevent these devastating diseases, which relies on the identification of essential, parasite specific targets that are absent in the host. Lipids constitute essential components of the cell and carry out multiple critical functions from building blocks of biological membranes to regulatory roles in signal transduction, organellar biogenesis, energy storage, and virulence. The recent technological advances of lipidomics has facilitated the broadening of our knowledge in the field of cellular lipid content, structure, functions, and metabolic pathways. Main body This review highlights the application of lipidomics (i) in the characterization of the lipidome of kinetoplastid parasites or of their subcellular structure(s), (ii) in the identification of unique lipid species or metabolic pathways that can be targeted for novel drug therapies, (iii) as an analytic tool to gain a deeper insight into the roles of specific enzymes in lipid metabolism using genetically modified microorganisms, and (iv) in deciphering the mechanism of action of anti-microbial drugs on lipid metabolism. Lastly, an outlook stating where the field is evolving is presented. Conclusion Lipidomics has contributed to the expanding knowledge related to lipid metabolism, mechanism of drug action and resistance, and pathogen–host interaction of trypanosomatids, which provides a solid basis for the development of better anti-parasitic pharmaceuticals.
Francisella tularensis is a zoonotic, facultative intracellular bacterial pathogen that replicates in a variety of cell types during infection. Following entry into the cell and phagosome escape, the bacterium replicates rapidly in the cytoplasm. F. tularensis intracellular growth depends on the availability of metabolizable essential nutrients to support replication.
Merocytophagy ("mero", Greek for partial; "cytophagy" for cell eating) is a process by which cells acquire microbes and cytosolic material through phagocytosis of a small portion of neighboring cells upon cell-cell contact. Cell-cell contact dependent transfer events can be assessed through coincubation of differently labeled cells. With these assays, it is difficult to analyze the recipient cells by microscopy or bacterial burden within only recipient cells. Therefore, we established a synchronized transfer assay that allows for recipient cells to be isolated from donor cells following transfer events at a high purity. Here, we present this assay in context of bacterial infections and cytosolic cellular staining. With this protocol, mechanisms of cell-cell contact dependent transfer events and the events following merocytophagy can easily be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.