In this paper, a mild and green protocol has been developed for the synthesis of quinazoline derivatives. The catalytic activity of 7‐aminonaphthalene‐1,3‐disulfonic acid‐functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2@Propyl–ANDSA) was investigated in the one‐pot synthesis of new derivatives of tetrahydrotetrazolo[1,5‐a]quinazolines and tetrahydrobenzo[h]tetrazolo[5,1‐b]quinazolines from the reaction of aldehydes, 5‐aminotetrazole, and dimedone or 6‐methoxy‐3,4‐dihyronaphtalen‐1(2H)‐one at 100 °C in H2O/EtOH as the solvent. The catalyst was characterized before and after the organic reaction. Fe3O4@SiO2@Propyl–ANDSA showed remarkable advantages in comparison with previous methods. Advantages of the method presented here include easy purification, reusability of the catalyst, green and mild procedure, and synthesis of new derivatives in high yields within short reaction time.
A porous cross‐linked poly (ethyleneamine)‐polysulfonamide (PEA‐PSA) as a novel organic support system is synthesized in the presence of silica template by nanocasting technique. The paper demonstrates immobilization of CuI nanoparticles inside the pores (PEA‐PSA@CuI) for the facile recovery and recycling of these nanoparticles. The presence of porous PEA‐PSA and PEA‐PSA@CuI nanocomposites was confirmed using FT‐IR spectroscopy, FE‐SEM, EDX, TGA, XRD, TEM, BET, XPS, WDX, 1H NMR, and ICP‐OES techniques. The PEA‐PSA@CuI along with Ag(I)/K2S2O8 was implemented as a reusable cooperative catalyst‐oxidant system in the N‐arylation of p‐toluenesulfonamide with substituted carboxylic acids in mild condition. So, the novel decarboxylative cross‐coupling catalyzed by copper and silver has been developed. Aromatic, secondary and tertiary aliphatic acids underwent high efficient decarboxylative processes with p‐toluenesulfonamide to afford the corresponding products. This method provides a practical approach for the flexible synthesis of sulfonamides from the readily affordable substrates. The catalyst is highly reusable and efficient, especially in terms of time and yield of the desired product.
A simple and efficient synthesis of 2‐amino‐4‐aryl thiazole derivatives was carried out through the reaction of substituted acetophenones and thiourea using three different types of catalytic systems including N,N,N′,N′‐tetrabromobenzene‐1,3‐disulfonamide [TBBDA], poly(N,N′‐dibromo‐N‐ethylbenzene‐1,3‐disulfonamide) [PBBS] and a combination of TBBDA and nano‐magnetic catalyst supported with functionalized 4‐amino‐pyridine silica (MNPs@SiO2‐Pr‐AP). The results showed that the use of TBBDA along with the MNPs@SiO2‐Pr‐AP gains the highest yields of the products in the shortest reaction time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.