Judgment post-stratification is used to supplement observations taken from finite mixture models with additional easy to obtain rank information and incorporate it in the estimation of model parameters. To do this, sampled units are post-stratified on ranks by randomly selecting comparison sets for each unit from the underlying population and assigning ranks to them using available auxiliary information or judgment ranking. This results in a set of independent order statistics from the underlying model, where the number of units in each rank class is random. We consider cases where one or more rankers with different ranking abilities are used to provide judgment ranks. The judgment ranks are then combined to produce a strength of agreement measure for each observation. This strength measure is implemented in the maximum likelihood estimation of model parameters via a suitable expectation maximization algorithm. Simulation studies are conducted to evaluate the performance of the estimators with or without the extra rank information. Results are applied to bone mineral density data from the third National Health and Nutrition Examination Survey to estimate the prevalence of osteoporosis in adult women aged 50 and over.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.