Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves.
Pyroshock has been an issue of great concern for aerospace and defense industrial applications. When pyroshock devices are detonated, they can easily cause failures in electronic, optical, relay, and magnetic components generally in mid-and far-fields which is not avoidable at the design level. Thus, many numerical and experimental pyroshock simulations have been widely studied to predict explosive-induced pyroshock effect quantitatively, especially the shock response spectrum (SRS). In this study, a laser shock-based pyroshock reconstruction method is proposed to simulate a pointwise explosive-induced pyroshock signal. The signal processing algorithm for the laser shock-based pyroshock reconstruction is developed in a LabVIEW platform and consists of subbands decomposition, SRS matching in decomposed bands, and wave synthesizing. Then, two experimental setups are configured to obtain pyroshock signals and laser shock signals at four points in an aluminum plate. The reconstructed pyroshock signals synthesized according to the signal processing of the laser shocks demonstrate high similarity to the real pyroshock signals, where the similarity is evaluated by the mean acceleration difference between the SRS curves. The optimized settings of the subband decomposition were obtained and can be in the future used in a pyroshock simulator based on laser shock for pyroshock simulation at any arbitrary point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.