Recently, various methods have been developed to identify COVID-19 cases, such as PCR testing and non-contact procedures such as chest X-rays and computed tomography (CT) scans. Deep learning (DL) and artificial intelligence (AI) are critical tools for early and accurate detection of COVID-19. This research explores the different DL techniques for identifying COVID-19 and pneumonia on medical CT and radiography images using ResNet152, VGG16, ResNet50, and DenseNet121. The ResNet framework uses CT scan images with accuracy and precision. This research automates optimum model architecture and training parameters. Transfer learning approaches are also employed to solve content gaps and shorten training duration. An upgraded VGG16 deep transfer learning architecture is applied to perform multi-class classification for X-ray imaging tasks. Enhanced VGG16 has been proven to recognize three types of radiographic images with 99% accuracy, typical for COVID-19 and pneumonia. The validity and performance metrics of the proposed model were validated using publicly available X-ray and CT scan data sets. The suggested model outperforms competing approaches in diagnosing COVID-19 and pneumonia. The primary outcomes of this research result in an average F-score (95%, 97%). In the event of healthy viral infections, this research is more efficient than existing methodologies for coronavirus detection. The created model is appropriate for recognition and classification pre-training. The suggested model outperforms traditional strategies for multi-class categorization of various illnesses.
The Internet of Things (IoT) has been influential in predicting major diseases in current practice. The deep learning (DL) technique is vital in monitoring and controlling the functioning of the healthcare system and ensuring an effective decision-making process. In this study, we aimed to develop a framework implementing the IoT and DL to identify lung cancer. The accurate and efficient prediction of disease is a challenging task. The proposed model deploys a DL process with a multi-layered non-local Bayes (NL Bayes) model to manage the process of early diagnosis. The Internet of Medical Things (IoMT) could be useful in determining factors that could enable the effective sorting of quality values through the use of sensors and image processing techniques. We studied the proposed model by analyzing its results with regard to specific attributes such as accuracy, quality, and system process efficiency. In this study, we aimed to overcome problems in the existing process through the practical results of a computational comparison process. The proposed model provided a low error rate (2%, 5%) and an increase in the number of instance values. The experimental results led us to conclude that the proposed model can make predictions based on images with high sensitivity and better precision values compared to other specific results. The proposed model achieved the expected accuracy (81%, 95%), the expected specificity (80%, 98%), and the expected sensitivity (80%, 99%). This model is adequate for real-time health monitoring systems in the prediction of lung cancer and can enable effective decision-making with the use of DL techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.