Elite suppressors (ES) are untreated human immunodeficiency virus type 1 (HIV-1)-infected individuals who control viremia to levels below the limit of detection of current assays. The mechanisms involved in this control have not been fully elucidated. Several studies have demonstrated that some ES are infected with defective viruses, but it remains unclear whether others are infected with replication-competent HIV-1. To answer this question, we used a sensitive coculture assay in an attempt to isolate replication-competent virus from a cohort of 10 ES. We successfully cultured six replication-competent isolates from 4 of the 10 ES. The frequency of latently infected cells in these patients was more than a log lower than that seen in patients on highly active antiretroviral therapy with undetectable viral loads. Full-length sequencing of all six isolates revealed no large deletions in any of the genes. A few mutations and small insertions and deletions were found in some isolates, but phenotypic analysis of the affected genes suggested that their function remained intact. Furthermore, all six isolates replicated as well as standard laboratory strains in vitro. The results suggest that some ES are infected with HIV-1 isolates that are fully replication competent and that long-term immunologic control of replication-competent HIV-1 is possible.
Inorganic polyphosphate (poly P) has been postulated to play a regulatory role in the transition to bacterial persistence. In bacteria, poly P balance in the cell is maintained by the hydrolysis activity of the exopolyphosphatase PPX. However, the Mycobacterium tuberculosis PPX has not been characterized previously. Here we show that recombinant MT0516 hydrolyzes poly P, and an MT0516-deficient M. tuberculosis mutant exhibits elevated intracellular levels of poly P and increased expression of the genes mprB, sigE, and rel relative to the isogenic wild-type strain, indicating poly P-mediated signaling. Deficiency of MT0516 resulted in decelerated growth during logarithmic-phase in axenic cultures, and tolerance to the cell wall-active drug isoniazid. The MT0516-deficient mutant showed a significant survival defect in activated human macrophages and reduced persistence in the lungs of guinea pigs. We conclude that exopolyphosphatase is required for long-term survival of M. tuberculosis in necrotic lung lesions.
The pathogenesis of intraocular tuberculosis remains poorly understood partly due to the lack of adequate animal models that accurately simulate human disease. Using a recently developed model of ocular tuberculosis following aerosol infection of guinea pigs with Mycobacterium tuberculosis, we studied the microbiological, histological, and clinical features of intraocular tuberculosis infection. Viable tubercle bacilli were cultivated from all eyes by Day 56 after aerosol delivery of ∼200 bacilli to guinea pig lungs. Choroidal tuberculous granulomas showed reduced oxygen tension, as evidenced by staining with the hypoxia-specific probe pimonidazole, and expression of vascular endothelial growth factor (VEGF) was detected in the retinal pigment epithelium (RPE) and photoreceptors. Fundoscopic examination of M. tuberculosis-infected guinea pig eyes revealed altered vascular architecture and chorioretinal hemorrhage by Day 56 after infection. This model may be useful in further elucidating the pathogenesis of ocular tuberculosis, as well as in developing tools for diagnosis and assessment of antituberculosis treatment responses in the eye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.