Cloud detection is an essential and important process in satellite remote sensing. Researchers proposed various methods for cloud detection. This paper reviews recent literature (2004-2018) on cloud detection. Literature reported various techniques to detect the cloud using remote-sensing satellite imagery. Researchers explored various forms of Cloud detection like Cloud/ No cloud, Snow/Cloud, and Thin Cloud/Thick Cloud using various approaches of machine learning and classical algorithms. Machine learning methods learn from training data and classical algorithm approaches are implemented using a threshold of different image parameters. Threshold-based methods have poor universality as the values change as per the location. Validation on ground-based estimates is not included in many models. The hybrid approach using machine learning, physical parameter retrieval, and ground-based validation is recommended for model improvement.
Mangrove forests are considered to be the most productive ecosystem yet vanishing rapidly over the world. They are mostly found in the intertidal zone and sheltered by the seacoast. Mangroves have potential socio-economic benefits such as protecting the shoreline from storm and soil erosion, flood and flow control, acting as a carbon sink, provides a fertile breeding ground for marine species and fauna. It also acts as a source of income by providing various forest products. Restoration and conservation of mangrove forests remain a big challenge due to the large and inaccessible areas covered by mangroves forests which makes field assessment difficult and time-consuming. Remote sensing along with various digital image classification approaches seem to be promising in providing better and accurate results in mapping and monitoring the mangroves ecosystem. This review paper aims to provide a comprehensive summary of the work undertaken, and addresses various remote sensing techniques applied for mapping and monitoring of the mangrove ecosystem, and summarize their potential and limitation. For that various digital image classification techniques are analyzed and compared based on the type of image used with its spectral resolution, spatial resolution, and other related image features along with the accuracy of the classification to derive specific class information related to mangroves. The digital image classification techniques used for mangrove mapping and monitoring in various studies can be classified into pixel-based, object-based, and knowledge-based classifiers. The various satellite image data analyzed are ranged from light detection and ranging (LiDAR), hyperspectral and multispectral optical imagery, synthetic aperture radar (SAR), and aerial imagery. Supervised state of the art machine learning/deep machine learning algorithms which use both pixel-based and object-based approaches and can be combined with the knowledge-based approach are widely used for classification purpose, due to the recent development and evolution in these techniques. There is a huge future scope to study the performance of these classification techniques in combination with various high spatial and spectral resolution optical imageries, SAR and LiDAR, and also with multi-sensor, multiresolution, and temporal data.
Rainfall prediction is very complex hydrologic process and is important as it holds the key to any countries' economy. Proposed model presents a new approach for yearly rainfall prediction of 30 Indian subdivisions. Yearly rainfall data of the Indian subdivision is available from IITM, Pune. The combination of Fast Fourier Transform (FFT) and Feed Forward Neural Network (FFNN) is applied for next one year rainfall prediction. Fast Fourier transform with filtering is performed on interpolated rainfall data to separate periodic components. These periodic components and delayed periodic components are given as input and desired output respectively to an FFNN for training. While testing the output of FFNN, inverse FFT gives the predicted rainfall value by amount of training input-output delay. This model is tested with 140 year's Indian subdivisions rainfall data. The experimental results of 30 subdivisions show that next one year rainfall prediction accuracy is above 92%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.