ARF encodes a potent tumor suppressor that antagonizes MDM2, a negative regulator of p53. ARF also suppresses the proliferation of cells lacking p53, and loss of ARF in p53-null mice, compared with ARF or p53 singly null mice, results in a broadened tumor spectrum and decreased tumor latency. To investigate the mechanism of p53-independent tumor suppression by ARF, potential interacting proteins were identified by yeast two-hybrid screen. The antiapoptotic transcriptional corepressor C-terminal binding protein 2 (CtBP2) was identified, and ARF interactions with both CtBP1 and CtBP2 were confirmed in vitro and in vivo. Interaction with ARF resulted in proteasome-dependent CtBP degradation. Both ARF-induced CtBP degradation and CtBP small interfering RNA led to p53-independent apoptosis in colon cancer cells. ARF induction of apoptosis was dependent on its ability to interact with CtBP, and reversal of ARF-induced CtBP depletion by CtBP overexpression abrogated ARF-induced apoptosis. CtBP proteins represent putative targets for p53-independent tumor suppression by ARF.
The alternative reading frame (ARF) tumor suppressor exerts both p53-dependent and p53-independent activities critical to the prevention of cancer in mice and humans. Recent evidence from mouse models suggests that when p53 is absent, further loss of ARF can widen the tumor spectrum, and potentiate invasion and metastasis. A major target of the p53-independent activity of ARF is the COOH-terminal binding protein (CtBP) family of metabolically regulated transcriptional corepressors, which are degraded upon acute exposure to the ARF protein. CtBPs are activated under conditions of metabolic stress, such as hypoxia, to repress epithelial and proapoptotic genes, and can mediate hypoxia-induced migration of cancer cells. The possibility that ARF could suppress tumor cell migration as part of its p53-independent activities was thus explored. Small-interfering RNA (siRNA)-mediated knockdown of ARF in human lung carcinoma cells led to increased cell migration, especially during hypoxia, and this effect was blocked by concomitant treatment with CtBP2 siRNA. Introduction of ARF into p53 and ARF-null human colon cancer cells inhibited hypoxia-induced migration. Furthermore, overexpression of CtBP2 in ARF-expressing cells enhanced cell migration, and an ARF mutant defective in CtBP-family binding was impaired in its ability to inhibit cell migration induced by CtBP2. ARF depletion or CtBP2 overexpression was associated with decreased PTEN expression and activation of the phosphatidylinositol 3-kinase pathway, and a phosphatidylinositol 3-kinase inhibitor blocked CtBP2-mediated cell migration. Thus, ARF can suppress cell migration by antagonizing CtBP2 and the phosphatidylinositol 3-kinase pathway, and these data may explain the increased aggressiveness of ARF-null tumors in mouse models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.