Background
Glioblastoma multiforme (GBM) is one of the most malignant types of central nervous system tumors. GBM patients usually have a poor prognosis. Identification of genes associated with the progression of the disease is essential to explain the mechanisms or improve the prognosis of GBM by catering to targeted therapy. It is crucial to develop a methodology for constructing a biological network and analyze it to identify potential biomarkers associated with disease progression.
Methods
Gene expression datasets are obtained from TCGA data repository to carry out this study. A survival analysis is performed to identify survival associated genes of GBM patient. A gene co-expression network is constructed based on Pearson correlation between the gene’s expressions. Various topological measures along with set operations from graph theory are applied to identify most influential genes linked with the progression of the GBM.
Results
Ten key genes are identified as a potential biomarkers associated with GBM based on centrality measures applied to the disease network. These genes are SEMA3B, APS, SLC44A2, MARK2, PITPNM2, SFRP1, PRLH, DIP2C, CTSZ, and KRTAP4.2. Higher expression values of two genes, SLC44A2 and KRTAP4.2 are found to be associated with progression and lower expression values of seven gens SEMA3B, APS, MARK2, PITPNM2, SFRP1, PRLH, DIP2C, and CTSZ are linked with the progression of the GBM.
Conclusions
The proposed methodology employing a network topological approach to identify genetic biomarkers associated with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.